PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.
Czasopismo
Rocznik
Strony
683--700
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan, China
  • Institut Supérieur des Mines et Géologie de Boké, Boké, Republic of Guinea
autor
  • Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan, China
autor
  • Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan, China
autor
  • Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan, China
autor
  • Faculty of Earth Science, China University of Geosciences (Wuhan), Wuhan, China
Bibliografia
  • 1. Aguilera Roberto (1980) Naturally fractured reservoirs. Petroleum Publishing, Tulsa, p 703
  • 2. Barth NC, Boulton CJ, Carpenter BM, Batt GE, Toy VG (2013) Slip localization on the Southern Alpine Fault, New Zealand. Tectonics 32:620–640. doi:10.1002/tect.20041
  • 3. Boness N, Zoback MD (2006) A multi-scale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics 7(5):F131–F146. doi:10.1190/1.2231107
  • 4. Boulton C, Moore DE, Lockner DA, Toy VG, Townend J, Sutherland R (2014) Frictional properties of exhumed fault gouges in DFDP-1cores, Alpine Fault, New Zealand. Geophys Res Lett 41:356–362
  • 5. Boyd A, Davis B, Flaum C (1995) The lowdown on low-resistivity pay. Oilfield Rev 7(3):4–18 (Schlumberger)
  • 6. Bradbury KK, Davis CR, Shervais JW (2015) Composition, alteration, and texture of fault-related rocks from Safod core and surface outcrop analogs: evidence for deformation processes and fluid-rock interactions. Pure Appl Geophys 172:1053. doi:10.1007/s00024-014-0896-6
  • 7. Bucker C, Rybach L (1996) A simple method to determine heat production from gamma logs. Mar Petrol Geol 13:373–375
  • 8. Chester FM, Mori JJ, Toczko S (2012) Integrated ocean drilling program expedition 343/343T preliminary report, Japan Trench Fast Drilling Project (JFAST), 1 April–24 May 2012 and 5–19 July 2012. IODP. doi:10.2204/iodp.pr.343343T.2012
  • 9. Cornet FH, Bernard P, Moretti I (2004) The corinth rift laboratory. Comptes Rendus Geosci 336:235241
  • 10. Daniels JJ, Olhoeft GR, Scott JH (1984) Interpretation of core and well log physical property data from drill hole UPH-3, Stephenson County, Illinois. U.S. Geological Survey. Open-File Report 82-941
  • 11. Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. Wiley, New Jersey
  • 12. Duan Q, Yang X, Ma S, Chen J, Chen J (2015) Fluid-rock interactions in seismic faults: implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics 666:260–280
  • 13. Euzen T, Delamaide E, Feuchtwanger T, Kingsmith KD (2010) Well log cluster analysis: an innovative tool for unconventional exploration. In: CSUG/SPE 137822, Canadian unconventional resources and international petroleum conference, Calgary, 19–21 October 2010
  • 14. Forster A, Hotzl H, Rettenmaier D, Cornet F, Borm G (2004) The ICDPDG Lab AIGION Fault Drilling Gulf of Corinth/Greece: a thermohydraulic approach to seismicity and geodynamics. Abstract at ICDP Conference “continental scientific drilling 2005: a decade of progress and challenges for the future” Potsdam. http://www.icdponline.de/news/future_abstracts.html
  • 15. Georgi DT, Bergren PA, Devier CA (1997) Plug gamma ray: key to formation evaluation. In: Poster presentation at the 1997 SCA International Symposium, Calgary, 8–10 September. SCA-9732
  • 16. Harms U, Tobin HJ (2011) Deep scientific drilling. In: Gupta HK (ed) Encyclopedia of solid earth. Springer Science + Business Media B.V, Dordrecht
  • 17. Harvey PK, Brewer TS, Pezard PA, Petrov VA (eds) (2005) Petrophysical properties of crystalline rocks. The Geological Society, London. ISBN: 1862391734 9781862391734
  • 18. Hirono T, Fujimoto K, Yokoyama T (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett. doi:10.1029/2008GL034476
  • 19. Hung J, Wu Y, Yeh E, Wu J (2007) Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault drilling project. Terr Atmos Ocean Sci 18(2):271–293
  • 20. Hung J, Ma K, Wang C, Ito H (2009) Subsurface structure, physical properties, fault zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics 466:307–321
  • 21. Hurst A (1990) Natural gamma-ray spectrometry in hydrocarbon-bearing sandstones from the Norwegian Continental Shelf. In: Hurst A, Lovell MA, Morton AC (eds) Geological application of wireline logs. Geological Society of London Special Publication No. 48, pp 211–222
  • 22. Isaacs AJ, Evans JP, Kolesar PT, Nohara T (2008) Composition, microstructures, and petrophysics of the Mozumi fault, Japan: in situ analyses of fault zone properties and structure in sedimentary rocks from shallow crustal levels. J Geophys Res 113:B12408. doi:10.1029/2007JB005314
  • 23. Jeppson TN, Bradbury KK, Evans JP (2010) Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J Geophys Res 115:B12423. doi:10.1029/2010JB007563
  • 24. Jones AG, Garcia X (2006) Electrical resistivity structure of the Yellowknife River Fault zone and surrounding region. In: Gold in the Yellowknife Greenstone Belt, Northwest Territories: results of the EXTECH III Multidisciplinary Research Project. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 3, Chapter: 10
  • 25. Keys WS (1979) Borehole geophysics in igneous and metamorphic rocks. In: Transactions of the annual logging symposium, 20th 1979, Tulsa. Society of Professional Well Log Analysts, Houston, pp OO1–OO26
  • 26. Kinoshita M, Gaku Kimura G, Saito S (2014) Seismogenic processes revealed through the Nankai trough seismogenic zone experiments: core, log, geophysics, and observatory measurements. Dev Mar Geol 7:641–670
  • 27. Kuo LW, Song SR, Yeh EC, Chen HF (2009) Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys Res Lett 36:L18306. doi:10.1029/2009GL039269
  • 28. Kuo LW, Song SR, Huang L, Yeh EC, Chen HF (2011) Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics 502(3–4):315–327
  • 29. Lay T (2009) Seismological grand challenges in understanding earth’s dynamic systems. Report to the National Science Foundation, IRIS Consortium
  • 30. Li H, Wang H, Xu Z, Si J, Pei J (2013) Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 584:23–42
  • 31. Li H, Xu Z, Niu Y, Kong G, Yao H (2014) Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project—hole 1 (WFSD-1). Tectonophysics 619–620:86–100
  • 32. Li H, Wang H, Xu Z, Li T, Si J, Sun Z (2015) Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3). Int J Earth Sci. doi:10.1007/s00531-015-1285-9
  • 33. Liu DL, Li HB, Lee TQ, Chou YM, Song SR, Sun ZM, Chevalier ML, Si JL (2014) Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China. Tectonophysics 2014(619–620):58–69
  • 34. Lockner DA, Morrow CA, Moore DE, Hickman SH (2011) Low strength of deep San Andreas Fault gouge from SAFOD core. Nature 472:82–85. doi:10.1038/nature09927CrossRefGoogle Scholar
  • 35. Ma KF, Tanaka H, Song SR, Wang C-Y, Hung JH, Tsai YB (2006) Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature 444:473–476. doi:10.1038/nature05253
  • 36. McRoberts CA, Furrer H, Jones DS (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 136:79–95
  • 37. Morrow C, Lockner DA, Hickman S (2015) Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD. J Geophys Res Solid Earth 120:8240–8258. doi:10.1002/2015JB012214
  • 38. Myers KJ, Wignall PB (1987) Understanding Jurassic organic-rich mudrocks: new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Leggett JK, Zuffa GG (eds) Marine clastic sedimentology: concepts and case studies. Graham & Trotman, London, pp 172–189
  • 39. Nie X, Changchun Zou C, Pan L, Huang Z, Dongming Liu D (2013) Fracture analysis and determination of in situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370 m). Tectonophysics 593(8):161–171
  • 40. Ogasawara H, Yanagidani T, Ando M (eds) (2002) Seismic process monitoring. In: Proceeding of a Joint Japan-Poland symposium on mining and experimental seismology, Kyoto. Balkema, p 414
  • 41. Ohtani T, Tanaka H, Fujimoto K, Higuchi T, Tomida N, Ito H (2001) Internal structure of the Nojima fault zone from the Hirabayashi GSJ drill core.The. Island Arc 10:392–400
  • 42. Pezard, P., Ito, H., Hermitte, D., and Revil, A., 2000, Electrical properties and alteration of granodiorites from the GSJ Hirabayashi hole, Japan, in International Workshop of the Nojima Fault Core and Borehole Data Analysis, GSJ INTErim Rep. EQ/00/1 and USGS Open-File Rep. 000–129, edited by H. Ito et al., pp. 255–262, Geological Survey of Japan, Tskuba, Japan
  • 43. Reches Z, Ito H (2007) Scientific drilling of active faults: past and future. In: Harms U, Koeberl C, Zoback MD (eds) Continental scientific drilling: a decade of progress and challenges for the future. Springer, Heidelberg. doi:10.1007/978-3-540-68778-8_6
  • 44. Rice JR, Cocco M (2007) Seismic fault rheology and earthquake dynamics. In: Handy MR, Hirth G, Hovious N (eds) The dynamic of fault zones. MIT Press, Cambridge, pp 99–137
  • 45. Schleichera AM, Sutherland R, Townend J, Toy VG, van der Pluijm BA (2015) Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand. N Z J Geol Geophys. doi:10.1080/00288306.2014.979841
  • 46. Serra O (1984) Fundamentals of well-log interpretation, vol 1. Elsevier, Amsterdam
  • 47. Serra O, Abbott HT (1982) The contribution of logging data. West FG, Laughlin AW, 1976. Spectral gamma logging into sedimentology and stratigraphy. Soc. Pet. Eng. AIME, Spec. crystalline basement rocks. Geology 4:617–618:117–131
  • 48. Sibson RH (1977) Fault rock sand fault mechanisms. Geol Soc Lond J 133:191–231
  • 49. Solum JG, Pluijm BA (2004) Phyllosilicate mineral assemblages of the SOFAD pilot hole and comparison with an exhumed segment of the San Andreas Fault system. Geophys Res Lett 31:L15S19. doi:10.1029/2004GL019909
  • 50. Song SR, Kuo LW, Yeh EC, Wang CY, Hung JH, Ma KF (2007) Characteristics of the lithology, fault-related rocks and fault zone structures in the TCDP Hole-A. Terr Atmos Ocean Sci 18:243–269
  • 51. Storti F, Balsamo F, Salvini F (2007) Particle shape evolution in natural carbonate granular wear material. Terra Nova 19:344–352
  • 52. Tanaka H, Wang CY, Chen WM, Sakaguchi A, Ujiie K, Ito H, Ando M (2002) Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan. Terr Atmos Ocean Sci 13:227–251
  • 53. Tanikawa W, Mishima T, Hirono T, Soh W, Song SR (2008) High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan. Earth Planet Sci Lett 272(1–2):372–381
  • 54. Tobin H, Kinoshita M (2006) NanTroSEIZE: the IODP Nankai Trough seismogenic zone experiment. Sci Drill 2:23–27. doi:10.2204/iodp.sd.2.06.2006
  • 55. Tobin H, Vannuchi P, Meschede M (2001) Structure, inferred mechanical properties, and implications for fluid transport in the decollement zone, Costa Rica convergent margin. Geology 29:907–910
  • 56. UNICEF (2009) Sichuan earthquake one year report. http://www.unicef.org/french/infobycountry/files/China_Earthquake_Report_2009ENG_Part_1.pdf
  • 57. Wang H, Li HB, Si JL (2014) Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics 619–620:101–114
  • 58. Wannamaker P, Jiracek G, Stodt J, Caldwell T, Gonzales V, McKnight J (2002) Fluid generation and pathways beneath an active compressional orogeny. The New Zealand Alps, inferred from magnetotelluric data. J Geophys Res 107(B6):2117. doi:10.1029/2001JB000186
  • 59. Wood GH, Kehn TM, Carter DM, Culbertson WC (2015) Coal Resource Classification System of the U.S. Geological Survey 2015. Geological survey circular 891. http://pubs.usgs.gov/circ/c891/geophysical.htm
  • 60. Wu FT, Blatter L, Roberson H (1975) Clay gouges in the San Andreas fault system and their possible implications. Pure Appl Geophys 113:87–95
  • 61. Wu FT, Roberson H, Wang C, Mao NH (1979) Fault zones, gouge and mechanical properties of clays under high pressure. In: Proceedings of Conference VIII—analysis of Actual Fault Zones in Bedrock. U.S. Geological Survey Open-File Report 79-1239
  • 62. Wu YH, Yeh EC, Dong JJ, Li-Wei Kuo LW, Hsu JY, Hung JH (2008) Core-log integration studies in hole—a of Taiwan Chelungpu-fault. Geophys J Int 174:949–965. doi:10.1111/j.1365-246X.2008.03841.x
  • 63. Yamada JJ, Mori S, Ide H, Kawakata Y, Iio H, Ogasawara H (2005) Radiation efficiency and apparent stress of small earthquake in a South African gold mine. J Geophys Res 101:B06301
  • 64. Yamaguchi S, Murakami T, Inokuchi H (2001) Resistivity mapping using the VLF-MT method around surface fault ruptures on the 1995 Hyogo-ken Nabu earthquake,Japan. Island Arc 10:296–305
  • 65. Yang C-H, Cheng PH, You JI, Tsai L (2002) Significant resistivity changes in the fault zone associated with the 1999 Chi-Chi earthquake, west-central Taiwan. Tectonophysics 350:299–313
  • 66. Yang T, Chen JY, Wang HQ, Jin HQ (2012) Rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan Earthquake, China and their implications: preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan). Tectonophysics 2012(530–531):331–341
  • 67. Yong C, Booth DC (2011) The Wenchuan Earthquake of 2008: anatomy of a Disaster. Beijing Science Press Published by Springer Verlag, Beijing. ISBN 978-3-642-21159-1
  • 68. Zheng Y, Li H, Gong Z (2016) Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): borehole temperature, thermal conductivity, and well log data. J Asian Earth Sci 117:23–32
  • 69. Zoback M, Hickman S, Ellsworth W (2011) Scientific drilling into the San Andreas Fault zone—an overview of SAFOD’s first five years. Sci Drill. doi:10.2204/iodp.sd.11.02.2011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02785168-380c-4855-9b52-ab19a39526f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.