PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Community level variation in plant leaf traits along an elevation gradient in the semi-arid mountains of Northwest China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An elevation gradient affects temperature, precipitation, soil properties, and other environmental factors important for plant growth, resulting in differential responses of plant functional traits within and between species. Here, three transect lines were established along an elevation gradient of 1500 to 2900 m that spanned four vegetation types: desert grassland, low mountain shrub zone, subalpine coniferous forest, and subalpine shrub zone in a semiarid mountain ecosystem (western part of the Helan Mountains, Northwest China). Nine functional plant traits — leaf nitrogen (LN), leaf carbon (LC), leaf thickness (LT), specific leaf area (SLA), leaf phosphorus, leaf dry matter content, and the leaf carbon/leaf nitrogen (C/N), leaf carbon/leaf phosphorus (C/P), leaf nitrogen/leaf phosphorus (N/P) — were quantified to investigate (1) how the community-weighted means (CWM) and unweighted means (CM) vary; (2) how inter- and intraspecific functional traits vary; and (3) how the climate, topography and soil properties affect plant functional traits at the community level. We found that with rising elevation, SLA and LT increased and then decreased, while C/P and N/P showed opposite trend for both CWM and CM. Additionally, the higher LN and lower C/N were found in subalpine shrub zone. The leaf functional traits between CWM and CM showed no significant difference but a close relationship between them. Generally, all the leaf traits were explained better by interspecific variation than by intraspecific variation, except for N/P. The covariance analysis indicated that LP and LC showed negative covariance effects, whereas all other leaf traits showed positive covariance effects. The contribution to plant leaf traits from altitude was slightly higher than vapor pressure and soil organic carbon. Our major finding emphasize that plant communities in the western Helan Mountains were assembled along elevation primarily via interspecific variation.
Rocznik
Strony
142--158
Opis fizyczny
Bibliogr. 72 poz., tab., wykr.
Twórcy
  • Agricultural School, Ningxia University, Yinchuan, China
autor
  • Agricultural School, Ningxia University, Yinchuan, China
  • State Key Laboratory Breeding Base of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan, China
Bibliografia
  • 1. Adler P.B., Salguero-Gómez R., Compagnoni A., Hsu J.S., Ray-Mukherjee J., Mbeau-Ache C., Franco M. 2014 - Functional traits explain variation in plant life history strategies - Proceedings of the National Academy of Sciences, 111: 740-745.
  • 2. Albert C.H., Grassein F., Schurr F.M., Vieilledent G., Violle C. 2011 - When and how should intraspecific variability be considered in trait-based plant ecology? - Perspectives in Plant Ecology, Evolution and Systematics, 13: 217-225.
  • 3. Angelini C., van der Heide T., Griffin J.N., Morton J.P., Derksen-Hooijberg M., Lamers L.P.M., Smolders A.J.P., Silliman B.R. 2015 - Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes - Proceedings of the Royal Society B: Biological Sciences, 282: 20150421.
  • 4. Bahar N.H.A., Ishida F.Y., Weerasinghe L.K., Guerrieri R., O'Sullivan O.S., Bloomfield K.J., Asner G.P., Martin R.E., Lloyd J., Malhi Y., Phillips O.L., Meir P., Salinas N., Cosio E.G., Domingues T.F., Quesada C.A., Sinca F., Escudero Vega A., Zuloaga Ccorimanya P.P., Aguila Pasquel J., Quispe Huaypar K., Cuba Torres I., Butrón Loayza R., Pelaez Tapia Y., Huaman Ovalle J., Long B.M., Evans J.R., At-kin O.K. 2017 - Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru - New Phytologist, 214: 1002-1018.
  • 5. Baruah G., Molau U., Bai Y., Alatalo J.M. 2017 - Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities - Scientific Reports, 7: 2571-11.
  • 6. Bjorkman A.D., Myers-Smith I.H., Elmendorf S.C., Normand S., Rüger N., Beck P.S.A., Blach-Overgaard A., Blok D., Cornelissen J.H.C., Forbes B.C., Georges D., Goetz S.J., Guay K.C., Henry G.H.R., HilleRisLambers J., Hollister R.D., Karger D.N., Kattge J., Manning P., Prevéy J.S., Rixen C., Schaepman-Strub G., Thomas H.J.D., Vellend M., Wilmking M., Wipf S., Carbognani M., Hermanutz L., Lévesque E., Molau U., Petraglia A., Soudzilovskaia N.A., Spasojevic M.J., Tomaselli M., Vowles T., Alatalo J.M., Alexander H.D., Anadon-Rosell A., Angers-Blondin S., Beest M.T., Berner L., Björk R.G., Buchwal A., Buras A., Christie K., Cooper E.J., Dullinger S., Elberling B., Eskelinen A., Frei E.R., Grau O., Grogan P., Hallinger M., Harper K.A., Heijmans M.M.P.D., Hudson J., Hülber K., Iturrate-Garcia M., Iversen C.M., Jaroszynska F., Johnstone J.F., Jørgensen R.H., Kaarlejärvi E., Klady R., Kuleza S., Kulonen A., Lamarque L.J., Lantz T., Little C.J., Speed J.D.M., Michelsen A., Milbau A., Nabe-Nielsen J., Nielsen S.S., Ninot J.M., Oberbauer S.F., Olofsson J., Onipchenko V.G., Rumpf S.B., Semenchuk P., Shetti R., Collier L.S., Street L.E., Suding K.N., Tape K.D., Trant A., Treier U.A., Tremblay J., Tremblay M., Venn S., Weijers S., Zamin T., Boulanger-Lapointe N., Gould W.A., Hik D.S., Hofgaard A., Jónsdóttir I.S., Jorgenson J., Klein J., Magnusson B., Tweedie C., Wookey P.A., Bahn M., Blonder B., van Bodegom P.M., Bond-Lamberty B., Campetella G., Cerabolini B.E.L., Chapin F.S., Cornwell W.K., Craine J., Dainese M., de Vries F.T., Díaz S., Enquist B.J., Green W., Milla R., Niinemets Ü., Onoda Y., Ordoñez J.C., Ozinga W.A., Penuelas J., Poorter H., Poschlod P., Reich P.B., Sandel B., Schamp B., Sheremetev S., Weiher E. 2018 - Plant functional trait change across a warming tundra biome - Nature, 562: 57-62.
  • 7. Blandino C., Fernández-Pascual E., Bueno Á., Pritchard H.W. 2021 - Plant reproductive traits in old and recently-restored temperate forest understories - Forest Ecology and Management, 496: 119385.
  • 8. Blonder B., Salinas N., Bentley L.P., Shenkin A., Chambi Porroa P.O., Valdez Tejeira Y., Boza Espinoza T.E., Goldsmith G.R., Enrico L., Martin R., Asner G.P., Díaz S., Enquist B.J., Malhi Y. 2018 - Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes-Amazon elevation gradient - Journal of Ecology, 106: 1683-1699.
  • 9. Bricca A., Conti L., Tardella M.F., Catorci A., Iocchi M., Theurillat J., Cutini M. 2019 - Community assembly processes along a sub-Mediterranean elevation gradient: analyzing the interdependence of trait community weighted mean and functional diversity - Plant Ecology, 220: 1139-1151.
  • 10. Campetella G., Chelli S., Wellstein C., Farris E., Calvia G., Simonetti E., Borsukiewicz L., Vanderplank S., Marignani M. 2019 - Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: measurements matter - Plant Ecology, 220: 765-776.
  • 11. Candeias M., Fraterrigo J. 2020 - Trait coordination and environmental filters shape functional trait distributions of forest understory herbs - Ecology and Evolution, 10: 14098-14112.
  • 12. Cingolani A.M., Cabido M., Gurvich D.E., Renison D., Díaz S. 2007 - Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? - Journal of Vegetation Science, 18: 911-920.
  • 13. Cornwell W., Ackerly D. 2009 - Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California - Ecological Monographs, 79: 109-126.
  • 14. Di Biase L., Fattorini S., Cutini M., Bricca A. 2021 - The role of inter- and intraspecific variations in grassland plant functional traits along an elevational gradient in a Mediterranean mountain area - Plants, 10: 359.
  • 15. Dong L.J., He W.M. 2019 - The relative contributions of climate, soil, diversity and interactions to leaf trait variation and spectrum of invasive Solidago canadensis - BMC Ecology, 19: 24.
  • 16. Duan Y., Zhou Q., Lv X., Wang J., Li X, Yang J. 2020 - Leaf stoichiometric characteristics of different vegetation types on the eastern slope of Helan Mountains - Acta Botanica Boreali-Occidentalia Sinica, 40: 113-120. (in Chinese, English summary)
  • 17. Duivenvoorden J.F., Cuello A.N.L. 2012 - Functional trait state diversity of Andean forests in Venezuela changes with altitude - Journal of Vegetation Science, 23: 1105-1113.
  • 18. Dwyer J.M., Laughlin D.C. 2017 - Selection on trait combinations along environmental gradients - Journal of Vegetation Science, 28: 672-673.
  • 19. Egan C.P., Callaway R.M., Hart M.M., Pith-er J., Klironomos J. 2016 - Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient - Mycorrhiza, 27: 273-282.
  • 20. Enquist B.J., Norberg J., Bonser S.P., Violle C., Webb C.T., Henderson A., Sloat L.L., Savage V.M. 2015. - Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait-based and metabolic scaling theories - Advances in Ecological Research, Vol. 52: 249-318.
  • 21. Fatima S., Hameed M., Ahmad F., Ahmad M.S.A., Khalil S., Munir M., Ashraf M., Ahmad I., Ahmad K.S., Kaleem M. 2022 - Structural and functional responses in widespread distribution of some dominant grasses along climatic elevation gradients - Flora, 289: 152034.
  • 22. Ferrero M.C., Tecco P.A., Gurvich D.E. 2022 - Is intraspecific variability an advantage in mountain invasions? Comparing functional trait variation in an invasive and a native woody species along multiple environmental gradients - Biological Invasions, 24: 1393-1412.
  • 23. Funk J.L., Larson J.E., Ames G.M., Butterfield B.J., Cavender-Bares J., Firn J., Laughlin D.C., Sutton-Grier A.E., Williams L., Wright J. 2017 - Revisiting the Holy Grail: using plant functional traits to understand ecological processes - Biological Reviews, 92: 1156-1173.
  • 24. Garnier E., Cortez J., Billès G., Navas M., Roumet C., Debussche M., Laurent G., Blanchard A., Aubry D., Bellmann A., Neill C., Toussaint J. 2004 - Plant functional markers capture ecosystem properties during secondary succession - Ecology, 85: 2630-2637.
  • 25. Goldsmith G.R., Bentley L.P., Shenkin A., Salinas N., Blonder B., Martin R.E., Castro Ccossco R., Chambi Porroa P., Diaz S., Enquist B.J., Asner G.P., Malhi Y. 2017 - Variation in leaf wettability traits along a tropical montane elevation gradient - New Phytologist, 214: 989-1001.
  • 26. Gregorich E.G., Carter M.R. 2007 - Soil sampling and methods of analysis - CRC Press, Boca Raton.
  • 27. Guittar J., Goldberg D., Klanderud K., Telford R.J., Vandvik V. 2016 - Can trait patterns along gradients predict plant community responses to climate change? - Ecology, 97: 2791-2801.
  • 28. Hammer D., Harper D.A.T., Ryan P.D. 2021 - PAST: Paleontological Statistics software package for education and data analysis - Palaeontologia Electronica, 4: 9.
  • 29. Han W., Fang J., Guo D., Zhang Y. 2005 - Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China - New Phytologist, 168: 377-385.
  • 30. Happonen K., Virkkala A.M., Kemppinen J., Niittynen P., Luoto M. 2022 - Relationships between above-ground plant traits and carbon cycling in tundra plant communities - Journal of Ecology 110: 700-716.
  • 31. Jiang S., Shang Z., Niu D., Zhang B., Fu H. 2014 - Relationship between grassland plant diversity and foliar C:N:P stoichiometry on the western slope of the Helan Mountain - Arid Zone Research, 31: 523-529. (in Chinese, English summary)
  • 32. Jiang Y., Kang M., Zhu Y., Xu G. 2006 - Plant biodiversity patterns on Helan Mountain, China - Acta Oecologica, 32: 125-133.
  • 33. Jung V., Violle C., Mondy C., Hoffmann L., Muller S. 2010 - Intraspecific variability and trait-based community assembly - Journal of Ecology, 98: 1134-1140.
  • 34. Kamiyama C., Oikawa S., Hikosaka K. 2014 - Seasonal change in light partitioning among coexisting species of different functional groups along elevation gradient in subalpine moorlands - New Phytologist, 204: 913-923.
  • 35. König C., Weigelt P., Kreft H. 2017 - Dissecting global turnover in vascular plants - Global Ecology and Biogeography, 26: 228-242.
  • 36. Kraft N.J., Godoy O., Levine J.M. 2015 - Plant functional traits and the multidimensional nature of species coexistence - Proceedings of the National Academy of Sciences, 112: 797-802.
  • 37. Kunstler G., Falster D., Coomes D.A., Poorter L., Sveriges L. 2016 - Plant functional traits have globally consistent effects on competition - Nature, 529: 204-207.
  • 38. Lacourse T., Adeleye M.A. 2022 - Climate and species traits drive changes in Holocene forest composition along an elevation gradient in Pacific Canada - Frontiers in Ecology and Evolution, 10: 838545.
  • 39. Lepš J., de Bello F., Šmilauer P., Doležal J. 2011 - Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects - Ecography, 34: 856-863.
  • 40. Leps J., Šmilauer P. 2014 - Multivariate analysis of ecological data using Canoco5 - Cambridge University Press, Cambridge.
  • 41. Liancourt P., Boldgiv B., Song D.S., Spence L.A., Helliker B.R., Petraitis P.S., Casper B.B. 2015 - Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe - Global Change Biology, 21: 3489-98.
  • 42. Lin G., Zeng D. Mao R. 2020 - Traits and their plasticity determine responses of plant performance and community functional property to nitrogen enrichment in a boreal peatland - Plant Soil, 449: 151-167.
  • 43. Long W., Schamp B.S., Zang R., Ding Y., Huang Y., Xiang Y. 2015 - Community assembly in a tropical cloud forest related to specific leaf area and maximum species height - Journal of Vegetation Science, 26: 513-523.
  • 44. MacLean S.A., Beissinger S.R. 2017 - Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis - Global Change Biology, 23: 4094-4105.
  • 45. Mason N.W.H., Richardson S.J., Peltzer D.A., de Bello F., Wardle D.A., Allen R.B., Sveriges L. 2012 - Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity - Journal of Ecology, 100: 678-689.
  • 46. Mayfield M.M., Levine J.M. 2010 - Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence - Ecology Letters, 13: 1085-1093.
  • 47. Mendes M.M., Gazarini L.C., Rodrigues M.L. 2001 - Acclimation of Myrtus communis to contrasting Mediterranean light environments - effects on structure and chemical composition of foliage and plant water relations - Environmental and Experimental Botany, 45: 165-178.
  • 48. Midolo G., De Frenne P., Hölzel N., Wellstein C. 2019 - Global patterns of intraspecific leaf trait responses to elevation - Global Change Biology, 25: 2485-2498.
  • 49. Oktavia D., Jin G. 2020 - Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest - Basic and Applied Ecology, 49: 22-33.
  • 50. Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H. 2013 - New handbook for standardized measurement of plant functional traits worldwide - Australian Journal of Botany, 61: 167-234.
  • 51. Poorter H., Niinemets U., Poorter L., Wright I.J., Villar H. 2009 - Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis - New Phytologist, 182: 565-588.
  • 52. Reham F.E., Ibrahim E., Rudolf P.R., Probert A.F., Abdel-Hamid A.K., Sven B. 2020 - Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area - Biological Invasions, 22: 1997-2016.
  • 53. Reich P.B., Oleksyn J. 2004 - Global patterns of plant leaf N and P in relation to temperature and latitude - Proceedings of the National Academy of Sciences, 101: 11001-11006.
  • 54. Schneider C.A., Rasband W.S., Eliceiri K.W. 2012 - NIH image to ImageJ: 25 years of image analysis - Nature Methods, 9: 671.
  • 55. Siefert A., Violle C., Chalmandrier L., Albert C.H., Taudiere A., Fajardo A., Aarssen L.W., Baraloto C., Carlucci M.B., Cianciaruso M.V., de L. Dantas V., de Bello, F., Duarte L.D.S., Fonseca C.R., Freschet G.T., Gaucherand S., Gross N., Hikosaka K., Jackson B., Jung V., Kamiyama C., Katabuchi M., Kembel S.W., Kichenin E., Kraft N.J.B., Lagerström A., Bagousse-Pinguet Y.L., Li Y., Mason N., Messier J., Nakashizuka T., Overton J.M., Peltzer D.A., Pérez-Ramos I.M., Pillar V.D., Prentice H.C., Richardson S., Sasaki T., Schamp B.S., Schöb C., Shipley B., Sundqvist M., Sykes M.T., Vandewalle M., Wardle D.A. 2015 - A global meta-analysis of the relative extent of intraspecific trait variation in plant communities - Ecological Letters, 18: 1406-1419.
  • 56. Sierra Cornejo N., Hertel D., Becker J.N., Hemp A., Leuschner C. 2020 - Biomass, morphology, and dynamics of the fine root system across a 3,000-m elevation gradient on Mt. Kilimanjaro - Frontiers in Plant Science, 11: 13-13.
  • 57. Sosnovsky, Y., Nachychko V., Prokopiv A., Honcharenko V. 2021 - Leaf anatomical trends in a temperate evergreen dwarf shrub, Rhododendron myrtifolium (Ericaceae) along elevational and exposure gradients in the northeastern Carpathian Mountains - Folia Geobotanica, 56: 27-42.
  • 58. St. Martin P., Mallik A.U. 2021 - Soil chemistry drives below ground traits in an alternate successional pathway from forest to heath - Oecologia, 195: 469-478.
  • 59. Steinbauer K., Lamprecht A., Winkler M., Di Cecco V., Fasching V., Ghosn D., Maringer A., Remoundou I., Suen M., Stanisci A., Venn S., Pauli H. 2022 - Recent changes in high-mountain plant community functional composition in contrasting climate regimes - Science of the Total Environment, 829: 154541.
  • 60. Su C., Zhang X., Ma W. 2018 - Altitudinal pattern and environmental interpretation of species diversity of Scrub community in the Helan Mountains, China - Mountain Research. 36: 699-708. (in Chinese, English summary)
  • 61. Toledo Aceves T., Moheno M.B., Sosa V.J., López Barrera F., Williams Linera G. 2022 - Leaf functional traits predict shade tolerant tree performance in cloud forest restoration plantings - Journal of Applied Ecology 59: 2274-2286.
  • 62. TRY 2022. Plant Trait Database. Available at: www.try-db.org .
  • 63. Ulrich W., Kubota Y., Piernik A., Gotelli N.J., Soliveres S., Soliveres S. 2018 - Functional traits and environmental characteristics drive the degree of competitive intransitivity in European saltmarsh plant communities - Journal of Ecology, 106: 865-876.
  • 64. Violle C., Enquist B.J., McGill B.J., Jiang L., Albert C.H., Hulshof C., Jung V., Messier J. 2012 - The return of the variance: intraspecific variability in community ecology - Trends in Ecology and Evolution, 27: 244-252.
  • 65. Waigwa A.N., Mwangi B.N., Wahiti G.R., Omengo F., Zhou Y., Wang Q., Schmid B. 2020 - Variation of morphological and leaf stoichiometric traits of two endemic species along the elevation gradient of Mount Kenya, East Africa - Journal of Plant Ecology, 13: 785-792.
  • 66. Wang M., Lu N., An N., Fu B. 2021 - A trait-based approach for understanding changes in carbon sequestration in semi-arid grassland during succession - Ecosystems, 25: 155-171.
  • 67. Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gullas J., Hikosaka K., Lamont B.B., Lee T., Lusk C., Midgley J.J., Navas M.L., Nilnemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R. 2004 - The worldwide leaf economics spectrum - Nature, 428: 821-827.
  • 68. Yang J., Lu J., Wang R., Wang X., Li S., Shen G. 2021 - Importance and benefit of incorporating the responses of species mean trait values in trait-based community assembly - Ecological Indicators 130: 108095.
  • 69. Zhang J., Zuo X., Lv P., Zhao S., Zhao X. 2019 - Plant functional trait response to habitat change and grazing in a semiarid grassland: unravelling species turnover and intraspecific variation effects - Polish Journal of Ecology, 67: 62-74.
  • 70. Zheng J., Chen Y., Wu G. 2013 - Association of vegetation patterns and environmental factors on the arid western slopes of the Helan Mountains, China - Mountain Research and Development, 33: 323-331.
  • 71. Zhu Y., Kang, M., Jiang Y., Liu Q. 2008 - Altitudinal pattern of species diversity in woody plant communities of Mountain Helan, Northwest China - Chinese Journal of Plant Ecology, 32: 574-581. (in Chinese, English summary).
  • 72. Zirbel C.R., Bassett T., Grman E., Brudvig L.A. 2017 - Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration - Journal of Applied Ecology, 54: 1070-1079.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02780000-5d63-4083-a5d0-5bd774cf36c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.