PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface diffusion and cluster formation of gold on the silicon (111)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Investigation of the gold atoms behaviour on the surface of silicon by molecular dynamics simulation method. The studies were performed for the case of one, two and four atoms, as well as incomplete and complete filling of gold atoms on the silicon surface. Design/methodology/approach: Investigations were performed by the method of molecular dynamics simulation using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). MEAM potential of interatomic interaction was used for modelling. Molecular dynamic simulations were carried out in isothermal-isobaric ensemble (NpT) with a timestep 1.0 fs. Findings: As a result of studies, the preferred interaction between gold atoms and the formation of clusters at temperatures up to 800 K was revealed. Analysis of the temperature dependences of the number of large jumps of atoms made it possible to calculate the activation energy of a single jump. It was found that activation energy of single atomic displacement decreases with increasing number of gold atoms. Research limitations/implications: Only a limited number of sets of atoms were used in the study. It is possible that for another combination of atoms and a larger substrate surface, the formation of gold nanoislands on the silicon surface can be observed, which requires further research. Practical implications: The research results can be used to select the modes of gold sputtering to create gold nanoislands or nanopillars on the silicon surface. Originality/value: Computer modelling of the behaviour of gold atoms on the surface of silicon with the possibility of their self-organization and cluster formation was performed for the first time.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
  • Physics of Metals Department, Ivan Franko National University of Lviv, 8 Kyrylo and Mephodiy St., 79005 Lviv, Ukraine
  • Physics of Metals Department, Ivan Franko National University of Lviv, 8 Kyrylo and Mephodiy St., 79005 Lviv, Ukraine
autor
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
autor
  • Physics of Metals Department, Ivan Franko National University of Lviv, 8 Kyrylo and Mephodiy St., 79005 Lviv, Ukraine
autor
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
  • TASK Computer Center, Gdansk University of Technology, Poland
Bibliografia
  • [1] M.K. Bayazit, J. Yue, E. Cao, A. Gavriilidis, J. Tang, Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry, ACS Sustainable Chemistry and Engineering 4/12 (2016) 6435-6442. DOI: https://doi.org/10.1021/acssuschemeng.6b01149
  • [2] M.A. El-Sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Accounts of Chemical Research 34/4 (2001) 257-264. DOI: https://doi.org/10.1021/ar960016n
  • [3] D.E. Mustafa, T. Yang, Z. Xuan, S. Chen, H. Tu, A. Zhang, Surface Plasmon Coupling Effect of Gold Nanoparticles with Different Shape and Size on Conventional Surface Plasmon Resonance Signal, Plasmonics 5/3 (2010) 221-231. DOI: DOI: https://doi.org/10.1007/s11468-010-9141-z
  • [4] E. Piscopiello, L. Tapfer, M. Vittori Antisari, P. Paiano, P. Prete, N. Lovergine, Formation of epitaxial gold nanoislands on (100) silicon, Physical Review B - Condensed Matter and Materials Physics 78/3 (2008) 035305. DOI: https://doi.org/10.1103/PhysRevB.78.035305
  • [5] S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chemical Society Reviews 35/3 (2006) 209-217. DOI: https://doi.org/10.1039/B514191E
  • [6] L. Wang, G.A. Hudson, Advanced Molecular Dynamics Simulations on the Formation of Transition Metal Nanoparticles, in: L. Wang (ed.), Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, IntechOpen, Rijeka, 2012, 25-42. DOI: https://doi.org/10.5772/36344
  • [7] D. Bahloul-Hourlier, P Perrot, Thermodynamics of the Au-Si-O system: Application to the synthesis and growth of silicon-silicon dioxide nanowires, Journal of Phase Equilibria and Diffusion 28/2 (2007) 150-157. DOI: https://doi.org/10.1007/s11669-007-9023-z
  • [8] A, Gapska, M. Łapiński, P. Syty, W. Sadowski, J.E. Sienkiewicz, B. Kościelska, Au-Si plasmonic platforms: synthesis, structure and FDTD simulations, Beilstein Journal of Nanotechnology 9 (2018) 2599-2608. DOI: https://doi.org/10.3762/bjnano.9.241
  • [9] W. Święch, E. Bauer, M Mundschau, A low energy electron microscopy study of the system Si (111)-Au, Surface Science 253/1 (1991) 283-296. DOI: https://doi.org/10.1016/0039-6028(91)90599-N
  • [10] S.S. Kosolobov, A.V. Latyshev, Atomic steps on the Si(111) surface during submonolayer gold adsorption, Bulletin of the Russian Academy of Sciences: Physics 72/2 (2008) 176-180. DOI: https://doi.org/10.1007/s11954-008-2010-7
  • [11] B. Smoljan, D. Iljkić, M. Maretić, Computer simulation of hardness and microstructure of casted steel 100Cr6, Archives of Materials Science and Engineering 78/1 (2016) 23-28. DOI: https://doi.org/10.5604/18972764.1226312
  • [12] T. Linek, T. Tański, W. Borek, Numerical analysis of the cavitation effect occurring on the surface of steel constructional elements, Archives of Materials Science and Engineering 85/1 (2017) 24-34. DOI: https://doi.org/10.5604/01.3001.0010.1555
  • [13] A. Śliwa, Application of the Finite Elements Method for computer simulation of properties of surface layers, Archives of Materials Science and Engineering 86/2 (2017) 56-85. DOI: https://doi.org/10.5604/01.3001.0010.4886
  • [14] V. Plechystyy, I Shtablavyi, S. Winczewski, K. Rybacki, S. Mudry, J. Rybicki, Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations, Materials Research Express 7/2 (2020) 026553. DOI: https://doi.org/10.1088/2053-1591/ab5e76
  • [15] L.J. Lewis, P. Jensen, N. Combe, J.L. Barrat, Diffusion of gold nanoclusters on graphite, Physical Review B - Condensed Matter and Materials Physics 61/23 (2000) 16084-16090. DOI: https://doi.org/10.1103/PhysRevB.61.16084
  • [16] P. Deltour, J.-L. Barrat, P. Jensen, Fast Diffusion of a Lennard-Jones Cluster on a Crystalline Surface, Physical Review Letters 78/24 (1997) 4597. DOI: https://doi.org/10.1103/PhysRevLett.78.4597
  • [17] S. Plimton, Fast Parallel Algorithms for Short - Range Molecular Dynamics, Journal of Computational Physics 117/1 (1995) 1-19. DOI: https://doi.org/10.1006/jcph.1995.1039
  • [18] S. Ryu, W. Cai, Molecular dynamics simulations of gold-catalyzed growth of silicon bulk crystals and nanowires, Journal of Materials Research 26/17 (2011) 2199-2206. DOI: https://doi.org/10.1557/jmr.2011.155
  • [19] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering 18/1 (2010) 015012. DOI: https://doi.org/10.1088/0965-0393/18/1/015012
  • [20] P.E. Batson, Motion of Gold Atoms on Carbon in the Aberration-Corrected STEM, Microscopy and Microanalysis 14/1 (2008) 89-97. DOI: https://doi.org/10.1017/S1431927608080197
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-027754e7-8524-4f5f-8235-e6f3e3101b30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.