PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation characteristics of longitudinal-torsion coupled waves in phononic crystal rods of chiral materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chiral properties of chiral materials have a great influence on the wave propagation. Applying chiral materials to the design of phononic crystal rods not only increases the design space, but also may have other potential advantages. There is a lack of research on designing phononic crystal rods using chiral materials and the propagation characteristics of elastic waves in phononic crystal rods made of chiral materials. In this study, chiral materials are introduced into the design of phonon crystal rods for the first time, Bragg scattering type and local resonance type phononic crystal rods are designed using chiral materials. Dispersion equations for the propagation of longitudinal-torsion coupled waves in the phononic crystal rods are derived, and the effect of the chirality of the materials on their bandgap range is studied. The study shows that: in Bragg scattering type phonon crystal rods, material chirality can greatly affect the bandgap, among them, the chiral direction has the greatest effect, and in order to obtain a low-frequency wide bandgap, the chiral coefficients of the materials should be increased as much as possible with the chiral directions of the two cells being opposite; in the local resonance type phonon crystal rod, only two types of oscillators are added to the material simultaneously to produce a band gap, and the starting frequency obtained is much lower than that of the Bragg scattering type.
Rocznik
Strony
543--558
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Tianjin University, Tianjin 300054, China
autor
  • Tianjin University, Tianjin 300054, China
Bibliografia
  • 1. D.M. Mead, Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995, Journal of Sound and Vibration, 190, 495–524, 1996.
  • 2. D. Richards, D.J. Pines, Passive reduction of gear mesh vibration using a periodic drive shaft, Journal of Sound and Vibration, 264, 317–342, 2003.
  • 3. M. Oudich, N.J. Gerard, Y. Deng, Y. Jing, Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials: a comprehensive review, Advanced Functional Materials, 33, 2206309, 2023.
  • 4. X. Wen, J. Wen, D. Yu, G. Wang, Y. Liu, X. Han, Phonon Crystals, Defense Industry Press, Beijing, 2009.
  • 5. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science, 289, 1734–1736, 2000.
  • 6. Y. Xiao, J. Wen, G. Wang, X. Wen, Theoretical and experimental study of locally resonant and bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators, Journal of Vibration and Acoustics-Transactions of ASME, 135, 041006, 2013.
  • 7. J. Zhao, Q. Wang, X. Deng, K. Choe, R. Zhong, C. Shuai, Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions, Composites Part B: Engineering, 168, 106–120, 2019.
  • 8. G. Wang, X. Wen, J. Wen, Y. Liu, Quasi-one-dimensional periodic structure with locally resonant band gap, Journal of Applied Mechanics, 73, 167–170, 2005.
  • 9. T. Li, X. Ma, Q. Zhang, Z. Wang, Band gap properties of periodic tapered beam structure using traveling wave method, Journal of Theoretical and Applied Mechanics, 54, 1297–1308, 2016.
  • 10. S. Jiang, L. Dai, H. Chen, H. Hu, W. Jiang, X. Chen, Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap, Applied Mathematics and Mechanics, 38, 411–422, 2017.
  • 11. P. Wang, Q. Yi, C. Zhao, M. Xing, J. Tang, Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms, Archive of Applied Mechanics, 87, 503–519, 2017.
  • 12. Y. Li, P. Wei, Y. Zhou, Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity, Acta Mechanica, 227, 1005–1023, 2015.
  • 13. S.K. Tomar, M. Garg, Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces, International Journal of Engineering Science, 43, 139–169, 2005.
  • 14. V.R. Parfitt, A.C. Eringen, Reflection of plane waves from the flat boundary of a micropolar elastic half-space, The Journal of the Acoustical Society of America, 45, 1258–1272, 2005.
  • 15. H.G. Georgiadis, I. Vardoulakis, E.G. Velgaki, Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity, Journal of Elasticity, 74, 17–45, 2004.
  • 16. R. Lianngenga, J. Lalvohbika, S.S. Singh, Incident waves at the surface of micropolar porous materials, International Journal of Computational Materials Science and Engineering, 11, 2250002, 2022.
  • 17. J. Li, Z. Miao, S. Li, Q. Ma, Inverse design of micro phononic beams incorporating size effects via tandem neural network, Materials, 16, 1518, 2023.
  • 18. H.C. Zhao, L.C. Bian, T. Zhang, G.J. Tong, P.S. Dai, Hierarchical chirality of biofilament induced by its chiral microstructure, Physica Scripta, 97, 055002, 2022.
  • 19. C.C. Sung, R. Ro, Y.M. Chang, Scattering characteristics of the chiral slab for normally incident longitudinal elastic waves, Wave Motion, 30, 135–142, 1999.
  • 20. P. Sharma, Size-dependent elastic fields of embedded inclusions in isotropic chiral solids, International Journal of Solids and Structures, 41, 6317–6333, 2004.
  • 21. S.K. Yang, S.Y. Hsia, Chiral composites as underwater acoustic attenuators, IEEE Journal of Oceanic Engineering, 25, 139–145, 2000.
  • 22. R.R. Sung, Parametric study of reflection characteristics at ahiral-chiral interfaces, Japanese Journal of Applied Physics, 36, 5208–5213, 1997.
  • 23. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Reflection of elastic plane waves at a planar achiral–chiral interface, The Journal of the Acoustical Society of America, 87, 2314–2318, 1990.
  • 24. N. Karathanasopoulos, J.F. Ganghoffer, Chiral and non-centrosymmetric effects on the nonlinear wave propagation characteristics of architectured cellular materials, Waves in Random and Complex Media, 32, 1694–1712, 2020.
  • 25. A. Bergamini, M. Miniaci, T. Delpero, D. Tallarico, B. Van Damme, G. Hannema, I. Leibacher, A. Zemp, Tacticity in chiral phononic crystals, Nature Communications, 10, 4525, 2019.
  • 26. T.J. Healey, Material symmetry and chirality in nonlinearly elastic rods, Mathematics and Mechanics of Solids, 7, 405–420, 2002.
  • 27. J. Sánchez-Dehesa, V.M. Garcia-Chocano, D. Torrent, F. Cervera, S. Cabrera, F. Simon, Noise control by sonic crystal barriers made of recycled materials, Journal of the Acoustical Society of America, 129, 1173–1183, 2011.
  • 28. M.J. Frazier, Dissipative Wave Propagation in Phononic Crystals and Metamaterials: Models and Analysis, University of Colorado, Boulder, 2015.
  • 29. D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material, Acta Materialia, 53, 4281–4292, 2005.
  • 30. C. Li, S. Zhang, L. Gao, W. Huang, Z. Liu, Vibration attenuation investigations on a distributed phononic crystals beam for rubber concrete structures, Mathematical Problems in Engineering, 2021, 9982376, 2021.
  • 31. S.K. Yang, S.Y. Hsia, Reflection and transmission of the longitudinal wave at an achiralchiral boundary, Japanese Journal of Applied Physics, 36, 1201–1208, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0273d55d-2ded-40a4-b2ae-8681a4879dcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.