PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory measurements of remote sensing reflectance of selected phytoplankton species from the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of unique laboratory measurements of remote sensing reflectance (Rrs) of several phytoplankton species typically occurring in high abundances in the Baltic Sea waters are presented. Reflectance spectra for diatoms: Cyclotella meneghiniana and Skeletonema marinoi and Dolichospermum sp., Nodularia spumigena and sp. were analysed in terms of assessment of their characteristic features and the differences between them. These species contain similar pigments, which results in general similarities of reflectance spectra, i.e. decrease of reflectance magnitude in the blue and red spectrum regions. However, hyper-spectral resolution of optical measurements let us find differences between optical signatures of diatoms and cyanobacteria groups and between species belonging to one group as well. These differences are reflected in location of local maxima and minima in the reflectance spectrum and changes in relative height of characteristic peaks with changes of phytoplankton concentration. Wide ranges of phytoplankton concentrations were analysed in order to show the persistence of Rrs characteristic features. The picoplankton species, Synechococcus sp. show the most distinct optical signature, which let to distinguish separate cluster in hierarchical cluster analysis (HCA). The results can be used to calibrate input data into radiative transfer model, e.g. phase function or to validate modelled Rrs spectra.
Czasopismo
Rocznik
Strony
86--96
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanography, University of Gdańsk, Poland
  • Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
  • CSIRO Oceans & Atmosphere, Hobart, TAS, Australia
autor
  • Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanography, University of Gdańsk, Poland
  • CSIRO Oceans & Atmosphere, Crawley, WA, Australia
autor
  • Institute of Oceanography, University of Gdańsk, Poland
Bibliografia
  • [1] Aguirre-Gómez, R., Weeks, A. R., Boxall, S. R., 2001. The identification of phytoplankton pigments from absorption spectra. Int. J. Remote Sens. 22 (2-3), 315-338, http://dx.doi.org/10.1080/014311601449952.
  • [2] Albertano, P., Somma, D. D., Capucci, E., 1997. Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. J. Plankton Res. 19 (10), 1405-1416, http://dx.doi.org/10.1093/plankt/19.10.1405.
  • [3] Chami, M., McKee, D., Leymarie, E., Khomenko, G., 2006. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance. Appl. Opt. 45 (36), 9210-9220, http://dx.doi.org/10.1364/AO.45.009210.
  • [4] Craig, S. E., Lohrenz, S. E., Lee, Z., Mahoney, K. L., Kirkpatrick, G. J., Schofield, O. M., 2006. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Appl. Opt. 45 (21), 5414-5425, http://dx.doi.org/10.1364/AO.45.005414.
  • [5] Darecki, M., Stramski, D., 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012.
  • [6] Darecki, M., Ficek, D., Krężel, A., Ostrowska, M., Majchrowski, R., Woźniak, S. B., Bradtke, K., Dera, J., Woźniak, B., 2008. Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation. Oceanologia 50 (4), 509-538.
  • [7] Evers-King, H., Bernard, S., Robertson-Lain, L., Probyn, T. A., 2014. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches. Opt. Express 22 (10), 11536-11551, http://dx.doi.org/10.1364/OE.22.011536.
  • [8] Feistel, R., Weinreben, S., Wolf, H., Seitz, S., Spitzer, P., Adel, B., Nausch, G., Schneider, B., Wright, D. G., 2010. Density and absolute salinity of the Baltic Sea 2006-2009. Ocean Sci. 6 (1), 3-24, http://dx.doi.org/10.5194/os-6-3-2010.
  • [9] Gitelson, A., 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 13 (17), 3367-3373, http://dx.doi.org/10.1080/01431169208904125.
  • [10] Gitelson, A. A., Schalles, J. F., Rundquist, D. C., Schiebe, F. R., Yacobi, Y. Z., 1999. Comparative reflectance properties of algal cultures with manipulated densities. J. Appl. Phycol. 11 (4), 345-354, http://dx.doi.org/10.1023/A:1008143902418.
  • [11] Godhe, A., McQuoid, M. R., Karunasagar, I., Karunasagar, I., Rehnstam-Holm, A.-S., 2006. Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi Sarno et Zingone (Bacillariophyceae). J. Phycol. 42 (2), 280-291, http://dx.doi.org/10.1111/j.1529-8817.2006.00197.x.
  • [12] Gordon, H. R., Brown, O. B., Jacobs, M. M., 1975. Computed relationships between the inherent and apparent optical properties of a flat, homogeneous ocean. Appl. Opt. 14 (2), 417-427, http://dx.doi.org/10.1364/AO.14.000417.
  • [13] Hommersom, A., Kratzer, S., Laanen, M., Ansko, I., Ligi, M., Bresciani, M., Giardino, C., Beltrán-Abaunza, J. M., Moore, G., Wernand, M., Peters, S., 2012. Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD Field-Spec, and TACCS). J. Appl. Remote Sens. 6 (1), 063615, http://dx.doi.org/10.1117/1.JRS.6.063615 21pp.
  • [14] Hunter, P. D., Tyler, A. N., Présing, M., Kovács, A. W., Preston, T., 2008. Spectral discrimination of phytoplankton colour groups: the effect of suspended particulate matter and sensor spectral resolution. Remote Sens. Environ. 112 (4), 1527-1544, http://dx.doi.org/10.1016/j.rse.2007.08.003.
  • [15] IOCCG, 2014. Phytoplankton functional types from space. In: Sathyendranath, S. (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15. IOCCG, Dartmouth, Canada, Phytoplankton functional types from Space, 156 pp.
  • [16] Jain, A. K., Murty, M. N., Flynn, P. J., 1999. Data clustering: a review. ACM Comput. Surv. 31 (3), 264-323, http://dx.doi.org/10.1145/331499.331504.
  • [17] Jeffrey, S. W., Humphrey, G. F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191-194, http://dx.doi.org/10.1016/S0015-3796(17)30778-3.
  • [18] Kahru, M., 1997. Using satellites to monitor large-scale environmental change: a case study of cyanobacteria blooms in the Baltic Sea. In: Kahru, M., Brown, C. W. (Eds.), Monitoring Algal Blooms: New Techniques for Detecting Large-scale Environmental Change. Springer, Berlin/New York, 43-61.
  • [19] Kanoshina, I., Lips, U., Leppänen, J.-M., 2003. The influence of weatherconditions(temperatureandwind)oncyanobacterialbloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2 (1), 29-41, http://dx.doi.org/10.1016/S1568-9883(02)00085-9.
  • [20] Karlsson, K. M., Kankaanpää, H., Huttunen, M., Meriluoto, J., 2005. First observation of microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae 4 (1), 163-166, http://dx.doi.org/10.1016/j.hal.2004.02.002.
  • [21] Kim,Y., Yoo, S.,Son, Y. B.,2016. Optical discrimination of harmful Cochlodiniumpolykrikoides blooms in Korean coastal waters. Opt. Express 24 (22), A1471, http://dx.doi.org/10.1364/OE.24.0A1471, 18 pp.
  • [22] Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B. W., Hajdu, S., Olli, K., 2013. Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnol. Oceanogr. 58 (2), 753-762, http://dx.doi.org/10.4319/lo.2013.58.2.0753.
  • [23] Kratzer, S., Brockmann, C., Moore, G., 2008. Using MERIS full resolution data to monitor coastal waters — a case study from Himmerfjärden, a fjord-like bay in the north-western Baltic Sea. Remote Sens. Environ. 112 (5), 2284-2300, http://dx.doi.org/10.1016/j.rse.2007.10.006.
  • [24] Kutser, T., Metsamaa, L., Strömbeck, N., Vahtmäe, E., 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67 (1-2), 303-312, http://dx.doi.org/10.1016/j.ecss.2005.11.024.
  • [25] Kutser, T., Paavel, B., Verpoorter, C., Ligi, M., Soomets, T., Toming, K., Casal, G., 2016. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 8 (6), 497, http://dx.doi.org/10.3390/rs8060497, 15 pp.
  • [26] Lewandowska, J., Kosakowska, A., 2004. Effect of iron limitation on cells of the diatom Cyclotella meneghiniana Kutzing. Oceanologia 46 (2), 269-287.
  • [27] Lubac, B., Loisel, H., Guiselin, N., Astoreca, R., Artigas, L. F., Mériaux, X., 2008. Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters. J. Geophys. Res. 113 (C6), http://dx.doi.org/10.1029/2007JC004451, 17 pp.
  • [28] Mazur, H., Pliński, M., 2003. Nodularia spumigena blooms and the occurrence of hepatotoxin the Gulf of Gdańsk. Oceanologia 45 (1), 305-316.
  • [29] Mazur-Marzec, H., Krężel, A., Kobos, J., Pliński, M., 2006. Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year survey. Oceanologia 48 (2), 255-273.
  • [30] Metsamaa, L., Kutser, T., Strömbeck, N., 2006. Recognising cyanobacterial blooms based on their optical signature: a modeling study. Boreal Environ. Res. 11, 493-506, 14 pp.
  • [31] Millie, D. F., Schofield, O. M., Kirkpatrick, G. J., Johnsen, G., Tester, P. A., Vinyard, B. T., 1997. Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the FLorida red tide dinoglagellate, Gymnodinium breve. Limnol. Oceanogr. 42 (5), 1240-1251, http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1240.
  • [32] Millie, D. F., Schofield, O. M. E., Kirkpatrick, G. J., Johnsen, G., Evens, T. J., 2002. Using absorbance and fluorescence spectra to discriminate microalgae. Eur. J. Phycol. 37 (3), 313-322, http://dx.doi.org/10.1017/S0967026202003700.
  • [33] Nowacki, J., Jarosz, E., 1998. The hydrological and hydrochemical division of the surface waters in the Gulf of Gdańsk. Oceanologia 40 (3), 261-272.
  • [34] Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea (Proceedings No. 106). In: HELCOM Baltic Sea Environment Proceedings. HELCOM, Helsinki, 144 pp.
  • [35] Oyama, Y., Matsushita, B., Fukushima, T., Chen, J., Nagai, T., Imai, A., 2010. Testing the spectral decomposition algorithm (SDA) for different phytoplankton species by a simulation based on tank experiments. Int. J. Remote Sens. 31 (6), 1605-1623, http://dx.doi.org/10.1080/01431160903475365.
  • [36] Pankow, H., Kell, V., Wasmund, N., Zander, B., 1990. Ostsee-Algenflora. G. Fischer Verl, Jena, 85 pp.
  • [37] Parsons, T. R., Maita, Y., Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 173 pp.
  • [38] Pliński, M., Mazur-Marzec, H., Jóźwiak, T., Kobos, J., 2007. The potential causes of cyanobacterial blooms in Baltic Sea estuaries. Oceanol. Stud. 36 (1), 125-137, http://dx.doi.org/10.2478/v10009-007-0001-x.
  • [39] Rabinowitch, E., Govindjee, 1969. Photosynthesis. John Wiley and Sons, Inc., New York/London/Sydney/Toronto, 273 pp.
  • [40] Roy, S., Llewellyn, C. A., Skarstad-Egeland, E., Johnsen, G., 1989. Phytoplankton Pigments Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge Environmental Chemistry Series). Cambridge Univ. Press, Cambridge, New York, 845 pp.
  • [41] Sathyendranath, S., Bracher, A., Brockmann, C., Platt, T., Ramon, D., Regner, P., 2016. Colour and Light in the Ocean (CLEO) 2016: A Scientific Roadmap from the CLEO Workshop Organised by ESA and PML. Frascati, Italy, 77 pp.
  • [42] Seppälä, J., Ylöstalo, P., Kaitala, S., Hällfors, S., Raateoja, M., Maunula, P., 2007. Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuar. Coast. Shelf Sci. 73 (3-4), 489-500, http://dx.doi.org/10.1016/j.ecss.2007.02.015.
  • [43] Shang, S., Wu, J., Huang, B., Lin, G., Lee, Z., Liu, J., Shang, S., 2014. A new approach to discriminate dinoflagellate from diatom blooms from space in the East China Sea. J. Geophys. Res. Oceans 119 (7), 4653-4668, http://dx.doi.org/10.1002/2014JC009876.
  • [44] Simis, S. G. H., Peters, S. W. M., Gons, H. J., 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 50 (1), 237-245, http://dx.doi.org/10.4319/lo.2005.50.1.0237.
  • [45] Smith, R. C., Baker, K. S., 1981. Optical properties of the clearest natural waters (200-800 nm). Appl. Opt. 20 (2), 177-184, http://dx.doi.org/10.4319/lo.2007.52.1.0217.
  • [46] Sobiechowska-Sasim, M., Stoń-Egiert, J., Kosakowska, A., 2014. Quantitative analysis of extracted phycobilin pigments in cyanobacteria — an assessment of spectrophotometric and spectrofulorometric methods. J. Appl. Phycol. 26 (5), 2065-2074, http://dx.doi.org/10.1007/s10811-014-0244-3.
  • [47] Soja-Woźniak, M., Craig, S., Kratzer, S., Wojtasiewicz, B., Darecki, M., Jones, C., 2017. A novel statistical approach for ocean colour estimation of inherent optical properties and cyanobacteria abundance in optically complex waters. Remote Sens. 9 (4), 343, http://dx.doi.org/10.3390/rs9040343, 22 pp.
  • [48] Suikkanen, S., Laamanen, M., Huttunen, M., 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71 (3-4), 580-592, http://dx.doi.org/10.1016/j.ecss.2006.09.004.
  • [49] Torrecilla, E., Stramski, D., Reynolds, R. A., Millán-Núñez, E., Cannizzaro, J., 2011. Cluster analysis of hyperspectral optical data for discriminating phytoplankton pigment assemblages in the open ocean. Remote Sens. Environ. 115 (10), 2578-2593, http://dx.doi.org/10.1016/j.rse.2011.05.014.
  • [50] Townend, J., 2002. Practical Statistics for Environmental and Biological Scientists. Wiley, Chichester/New York, 276 pp.
  • [51] Vaillancourt, R. D., Brown, C. W., Guillard, R. R. L., Balch, W. M., 2004. Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. J. Plankton Res. 26 (2), 191-212, http://dx.doi.org/10.1093/plankt/fbh012.
  • [52] Volten, H., de Haan, J. F., Hovenier, J. W., Schreurs, R., Vassen, W., Dekker, A. G., Hoogenboom, H. J., Charlton, F., Wouts, R., 1998. Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnol. Oceanogr. 43 (6), 1180-11970, http://dx.doi.org/10.4319/lo.1998.43.6.1180.
  • [53] Walsby, A. E., Hayes, P. K., Boje, R., 1995. The gas vesicles, buoyancy and vertical distribution of cyanobacteria in the Baltic Sea. Eur. J. Phycol. 30 (2), 87-94, http://dx.doi.org/10.1080/09670269500650851.
  • [54] Warner, R. A., Fan, C., 2013. Optical spectra of phytoplankton cultures for remote sensing applications: focus on harmful algal blooms. Int. J. Environ. Sci. Dev. 4 (2), 94-98, http://dx.doi.org/10.7763/IJESD.2013.V4.312.
  • [55] Whitmire, A. L., Pegau, W. S., Karp-Boss, L., Boss, E., Cowles, T. J., 2010. Spectral backscattering properties of marine phytoplankton cultures. Opt. Express 18 (14), 15073-15093, http://dx.doi.org/10.1364/OE.18.015073.
  • [56] Wojtasiewicz, B., Stoń-Egiert, J., 2016. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. J. Appl. Phycol. 28 (4), 2299-2314, http://dx.doi.org/10.1007/s10811-015-0774-3.
  • [57] Wojtasiewicz, B., Stramski, D., 2010. Chlorophyll-specific absorption and scattering coefficients of selected cyanobacteria. In: Proceedings of Ocean Optics XX.
  • [58] Woźniak, M., 2014. Identification of the dominant phytoplankton groups in the algal blooms in the waters of the Baltic Sea using remote sensing methods. (PhD). Univ. Gdańsk, Gdynia, 153 pp. (in Polish).
  • [59] Woźniak, B., Krężel, A., Darecki, M., Woźniak, S. B., Majchrowski, R., Ostrowska, M., Kozłowski, Ł., Ficek, D., Olszewski, J., Dera, J., 2008. Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus. Oceanologia 50 (4), 451-508.
  • [60] Woźniak, M., Bradtke, K. M., Darecki, M., Krężel, A., 2016. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the Baltic Sea. Remote Sens. 8 (3), http://dx.doi.org/10.3390/rs8030212, 23 pp.
  • [61] Wright, S. W., Jeffrey, S. W., 1987. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol.-Prog. Ser. 38, 259-266.
  • [62] Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., Qiu, Z., 2015. Hyperspectral differentiation of phytoplankton taxonomic groups: a comparison between using remote sensing reflectance and absorption spectra. Remote Sens. 7 (11), 14781-14805, http://dx.doi.org/10.3390/rs71114781.
  • [63] Zibordi, G., Darecki, M., 2006. Immersion factor for the RAMSES series of hyperspectral underwater radiometers. J. Opt. Pure Appl. Opt. 8, 252-258.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026e91e0-9f89-4c2f-86f3-814eab2d5d1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.