PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of fluid rheology on blood flow haemodynamics in patient-specific arterial networks of varied complexity - in-silico studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results obtained with computational fluid dynamics (CFD) rely on assumptions made during a pre-processing stage, including a mathematical description of a fluid rheology. Up to this date there is no clear answer to several aspects, mainly related to the question of whether and under what conditions blood can be simplified to a Newtonian fluid during CFD analyses. Different research groups present contradictory results, leaving the question unanswered. Therefore, the objective of this research was to perform steady-state and pulsatile blood flow simulations using eight different rheological models in geometries of varying complexity. A qualitative comparison of shear- and viscosity-related parameters showed no meaningful discrepancies, but a quantitative analysis revealed significant differences, especially in the magnitudes of wall shear stress (WSS) and its gradient (WSSG). We suggest that for the large arteries blood should be modelled as a non-Newtonian fluid, whereas for the cerebral vasculature the assumption of blood as a simple Newtonian fluid can be treated as a valid simplification.
Rocznik
Strony
8--21
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lodz University of Technology, Żeromskiego 116 St., 90-924 Łódź, Poland
  • Faculty of Mechanical Engineering, Lodz University of Technology, Żeromskiego 116 St., 90-924 Łódź, Poland
  • Faculty of Mechanical Engineering, Lodz University of Technology, Żeromskiego 116 St., 90-924 Łódź, Polandobidowski
  • Faculty of Mechanical Engineering, Lodz University of Technology, Żeromskiego 116 St., 90-924 Łódź, Poland
Bibliografia
  • 1. Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech. 2014;47(7): 1642–51.
  • 2. Caballero AD, Laín S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Engin. 2015;18(11):1200–16.
  • 3. Doost SN, Zhong L, Su B, Morsi YS. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed [Internet]. 2016;127:232–47. Available from: http://dx.doi.org/10.1016/j.cmpb.2015.12.020
  • 4. Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J Biomech. 2004;37(5):709–20.
  • 5. Jodko D, Jeckowski M, Tyfa Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connec-tive tissue. Int j numer method biomed eng. 2022;38(8):1–23.
  • 6. Reorowicz P, Tyfa Z, Obidowski D, Wiśniewski K, Stefańczyk L, Jóźwik K, et al. Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations. Biocybern Biomed Eng. 2022;42(1):375–90.
  • 7. Tyfa Z, Obidowski D, Reorowicz P, Stefańczyk L, Fortuniak J, Jóźwik K. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vas-cular geometries. Biocybern Biomed Eng. 2018;38(2):228–42.
  • 8. Wisniewski K, Tomasik B, Tyfa Z, Reorowicz P, Bobeff EJ. Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms. J Clin Med. 2021;10(7):1348.
  • 9. Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheol-ogy. 1991;28(3–4):241–62.
  • 10. Gijsen FJH, Van De Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 1999; 32(7):705–13.
  • 11. Shinde S, Mukhopadhyay S, Mukhopadhyay S. Investigation of flow in an idealized curved artery: comparative study using cfd and fsi with newtonian and non-newtonian fluids. J Mech Med Biol [Internet]. 2022;22:2250010. Available from: https://doi.org/10.1142/S0219519422500105
  • 12. Boyd J, Buick JM. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method. Phys Med Biol. 2007;52(20):6215–28.
  • 13. Mendieta JB, Fontanarosa D, Wang J, Paritala PK, McGahan T, Lloyd T, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol [Internet]. 2020;19(5):1477–90. Availa-ble from: https://doi.org/10.1007/s10237-019-01282-7.
  • 14. Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech [Internet]. 2011;44(11):2021–30. Available from: http://dx.doi.org/10.1016/j.jbiomech.2011.04.023
  • 15. Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Transient simulations. J Biomech. 2006;39(6):1116–28.
  • 16. Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Nonnewton Fluid Mech [Inter-net]. 2014;207:42–52. Available from: http://dx.doi.org/10.1016/j.jnnfm.2014.03.007
  • 17. Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. Procedure for estimation and reporting of uncertainty due to discreti-zation in CFD applications. J Fluids Eng Trans ASME. 2008;130(7):0780011–4.
  • 18. Obidowski D, Reorowicz P, Witkowski D, Sobczak K, Jóźwik K. Methods for determination of stagnation in pneumatic ventricular as-sist devices. Int J Artif Organs. 2018;41(10):653–63.
  • 19. Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, et al. Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation. Ann Biomed Eng. 2008;36(11):1793–804.
  • 20. Logerfo FW, Nowak MD, Quist WC. Structural details of boundary layer separation in a model human carotid bifurcation under steady and pulsatile flow conditions. J Vasc Surg. 1985;2(2):263–9.
  • 21. Subramaniam T, Rasani MR. Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics. J Adv Res Appl Sci Eng Technol. 2022;26(2):29–40.
  • 22. Nagai Y, Kemper MK, Earley CJ, Metter EJ. Blood-flow velocities and their relationships in carotid and middle cerebral arteries. Ultrasound Med Biol. 1998;24(8):1131–6.
  • 23. Pomella N, Wilhelm EN, Kolyva C, González-Alonso J, Rakob-owchuk M, Khir AW. Common Carotid Artery Diameter, Blood Flow Velocity and Wave Intensity Responses at Rest and during Exercise in Young Healthy Humans: A Reproducibility Study. Ultrasound Med Biol. 2017;43(5):943–57.
  • 24. Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Assessing the blood pressure waveform of the carotid artery using an ultra-sound image processing method. Ultrasonography. 2017;36(2): 144–52.
  • 25. Lantz BM, Forester JM, Link DP, Holcroft JW. Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am J Roentgenol. 1981;137(5):903–7.
  • 26. Stein PD, Sabbah HN, Anbe DT, Walburn FJ. Blood velocity in the abdominal aorta and common iliac artery of man. Biorheology. 1979;16(3):249–55.
  • 27. Bruss ZS, Raja A. Physiology, Stroke Volume. In: StatPearls Publish-ing. StatPearls Publishing; 2022.
  • 28. Czernicki Z. Fizjologia mózgowego przepływu krwi. In: Czepko R, editor. Wybrane zagadnienia diagnostyki i leczenia malformacji na-czyniowych ośrodkowego układu nerwowego. Uniwersytet Jagiellon-ski - Wydawnictwo Uniwersytetu Jagiellonskiego; 2007. 15–20.
  • 29. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribu-tion of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56.
  • 30. Majka J. Fizjologia krążenia mózgowego. In: Szczudlik A, Członkowa A, Kwieciński H, Słowik A, editors. Udar mózgu. 1st ed. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego; 2007;26–41.
  • 31. Seidel E, Eicke BM, Tettenborn B, Krummenauer F. Reference values for vertebral artery flow volume by duplex sonography in young and elderly adults. Stroke. 1999;30(12):2692–6.
  • 32. Amin-Hanjani S, Du X, Pandey DK, Thulborn KR, Charbel FT. Effect of age and vascular anatomy on blood flow in major cerebral vessels. J Cereb Blood Flow Metab. 2015;35(2):312–8.
  • 33. Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35(December 2014):648–54.
  • 34. Apostolidis AJ, Moyer AP, Beris AN. Non-Newtonian effects in simu-lations of coronary arterial blood flow. J Nonnewton Fluid Mech [In-ternet]. 2016;233:155–65. Available from: http://dx.doi.org/10.1016/j.jnnfm.2016.03.008
  • 35. Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computa-tional fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math. 2016;8(1):46–60.
  • 36. Moradicheghamahi J, Sadeghiseraji J, Jahangiri M. Numerical solu-tion of the Pulsatile, non-Newtonian and turbulent blood flow in a pa-tient specific elastic carotid artery. Int J Mech Sci [Internet]. 2019;150(October 2017):393–403. Available from: https://doi.org/10.1016/j.ijmecsci.2018.10.046
  • 37. Razavi SE, Farhangmehr V, Zendeali N. Numerical investigation of the blood flow through the middle cerebral artery. BioImpacts [Inter-net]. 2018;8(3):195–200. Available from: https://doi.org/10.15171/bi.2018.22
  • 38. Oliveira IL, Santos GB, Gasche JL, Militzer J, Baccin CE. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. J Biomech Eng [Internet]. 2021;143(7):071006. Available from: https://doi.org/10.1115/1.4050539
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026d7df3-be7c-400e-a462-c056aa30dd1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.