PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Luminescence of hydrothermally fabricated PbF2:Er3+ particles and their application in bifacial silicon solar cells

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report the synthesis of PbF2:Er3+ particles using a hydrothermal method. The structure and upconversion emission properties of the products are investigated by scanning electron microscopy, X-ray diffractometer, Raman spectrophotometer and fluorescence spectrometry. An increase in Er3+ concentration in the crystals changes the PbF2 structure from a mixed phase to a cubic phase and decreases the grain size to nanoscale levels. Enhanced upconversion efficiency is achieved after annealing resulted from the formation of the cubic phase and the increase of grain size. The optimal Er3+ concentration is found to be 4% after annealing, and applied to the back of a bifacial silicon solar cell, maximum external quantum efficiencies of 0.38% and 0.79% are respectively obtained under 0.77 W/cm2 laser excitation (1560 nm) and AM1.5 + laser co-excitation.
Słowa kluczowe
Czasopismo
Rocznik
Strony
463--473
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Key Lab of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China
autor
  • Yingli Solar, 3399 Chaoyang North Road, Baoding, China
autor
  • Key Lab of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China
autor
  • Key Lab of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China
autor
  • Key Lab of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China
autor
  • Key Lab of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China
Bibliografia
  • [1] TRUPKE T., GREEN M.A., WÜRFEL P., Improving solar cell efficiencies by up-conversion of sub-bandgap light, Journal of Applied Physics 92(7), 2002, pp. 4117–4122.
  • [2] RODRÍGUEZ V.D., TIKHOMIROV V.K., MÉNDEZ-RAMOS J., DEL-CASTILLO J., GÖRLLER-WALRAND C., Measurement of quantum yield of up-conversion luminescence in Er3+-doped nano-glass-ceramics, Journal of Nanoscience and Nanotechnology 9(3), 2009, pp. 2072–2075.
  • [3] SONGJUN ZENG, GUOZHONG REN, CHANGFU XU, Intense blue photoluminescence of the Tm3+/Yb3+co-doped single-crystalline hexagonal phase NaYF4 nanorods, Journal of Alloys and Compounds 509(5), 2011, pp. 2540–2543.
  • [4] NGUYEN D.C., FAULKER G.E., DULICK M., Blue-green (450-nm) upconversion Tm3+:YLF laser, Applied Optics 28(17), 1989, pp. 3553–3555.
  • [5] DOWNING E.A., HESSELINK L., MACFARLANE R.M., KLEIN J.R., EVANS D., RALSTON J., A laser-diode--driven, three-color, solid-state 3-D display, [In] Summaries of papers presented at the Conference on Lasers and Electro-Optics, CLEO ’96, Vol. 9, 1996, pp. 89–90.
  • [6] GUANGSHUN YI , HUACHANG LU, SHUYING ZHAO, YUE GE, WENJUN YANG, DEPU CHEN, LIANG-HONG GUO, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors, Nano Letters 4(11), 2004, pp. 2191–2196.
  • [7] TIKHOMIROV V.K., ADAMO G., NIKOLAENKO A.E., RODRIGUEZ V.D., GREDIN P., MORTIER M., ZHELUDEV N.I., MOSHCHALKOV V.V., Cathodo- and photoluminescence in Yb3+-Er3+ co-doped PbF2 nanoparticles, Optics Express 18(9), 2010, pp. 8836–8846.
  • [8] PORTELLA K.F., RATTMANN K.R., DE SOUZA G.P., GARCIA C.M., CANTAO M.P., MUCCILLO R., Characterization of PbF2 phase transition by several techniques, Journal of Materiale Science 35(13), 2000, pp. 3263–3268.
  • [9] FANQING ZENG, GUOZHONG REN, XIANNIAN QIU, QIBIN YANG, JINGWU CHEN, The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2-PbF2-PbO glass ceramics, Journal of Non-Crystalline Solids 354(29), 2008, pp. 3428–3432.
  • [10] SILVA M.A.P., BRIOIS V., POULAIN M., MESSADDEQ Y., RIBEIRO S.J.L., SiO2-PbF2-CdF2 glasses and glass ceramics, Journal of Physics and Chemistry of Solids 64(1), 2003, pp. 95–105.
  • [11] MORTIER M., Nucleation and anionic environment of Er3+ in a germanate glass, Journal of Non-Crystalline Solids 318(1–2), 2003, pp. 56–62.
  • [12] GANGQIANG ZHU, PENG LIU, HOJAMBERDIEV M., JIAN-PING ZHOU, XIJIN HUANG, Synthesis of orthorhombic and cubic PbF2 by hydrothermal method, Journal of Materials Science 45(7), 2010, pp. 1846–1853.
  • [13] SARKAR S., HAZRA C., CHATTI M., SUDARSAN V., MAHALINGAM V., Enhanced quantum efficiency for Dy3+ emissions in water dispersible PbF2 nanocrystals, RSC Advances 2(22), 2012, pp. 8269–8272.
  • [14] TIKHOMIROV V.K., MORTIER M., GREDIN P., PATRIARCHE G., GÖRLLER-WALRAND C., MOSHCHALKOV V.V., Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles, Optics Express 16(19), 2008, pp. 14544–14549.
  • [15] EHM L., KNORR K., MÄDLER F., VOIGTLÄNDER H., BUSETTO E., CASSETTA A., LAUSI A., WINKLER B., High-pressure X-ray diffraction study on PbF2, Journal of Physics and Chemistry of Solids 64(6), 2003, pp. 919–925.
  • [16] ALOV D.L., RYBCHENKO S.I., Luminescence of orthorhombic PbF2, Journal of Physics: Condensed Matter 7(7), 1995, pp. 1475–1482.
  • [17] THANGADURAI P., RAMASAMY S., KESAVAMOORTHY R., Raman studies in nanocrystalline lead (II) fluoride, Journal of Physics: Condensed Matter 17(6), 2005, pp. 863–874.
  • [18] GILBERT B., HENGZHONG ZHANG, FENG HUANG, FINNEGAN M.P., WAYCHUNAS G.A., BANFIELD J.F., Special phase transformation and crystal growth pathways observed in nanoparticles, Geochemical Transactions 4, 2003, p. 21.
  • [19] XIANGFU WANG, YANYAN BU, YANG XIAO, CAIXIA KAN, DI LU, XIAOHONG YAN, Size and shape modifications, phase transition, and enhanced luminescence of fluoride nanocrystals induced by doping, Journal of Materials Chemistry C 1(18), 2013, pp. 3158–3166.
  • [20] FENG WANG, JUAN WANG, XIAOGANG LIU, Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles, Angewandte Chemie International Edition 49(41), 2010, pp. 7456–7460.
  • [21] FENG WANG, XIAOGANG LIU, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews 38(4), 2009, pp. 976–989.
  • [22] RAMASAMY S., SMITH D.J., THANGADURAI P., RAVICHANDRAN K., PRAKASH T., PADMAPRASAD K., SABARINATHAN V., Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber, Pramana – Journal of Physics 65(5), 2005, pp. 881–891.
  • [23] DE WILD J., RATH J.K., MEIJERINK A., VAN SARK W.G.J.H.M., SCHROPP R.E.I., Enhanced near-infrared response of a-Si:H solar cells with NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors, Solar Energy Materials and Solar Cells 94(12), 2010, pp. 2395–2398.
  • [24] GOLDSCHMIDT J.C., FISCHER S., LÖPER P., KRÄMER K.W., BINER D., HERMLE M., GLUNZ S.W., Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination, Solar Energy Materials and Solar Cells 95(7), 2011, pp. 1960–1963.
  • [25] HERNÁNDEZ-RODRÍGUEZ M.A., IMANIEH M.H., MARTÍN L.L., MARTÍN I.R., Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm, Solar Energy Materials and Solar Cells 116, 2013, pp. 171–175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026c9566-b7bb-4f15-8a15-9e12ce5838ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.