PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A High Performance Digital Time Interval Spectrometer: An Embedded, FPGA-Based System With Reduced Dead Time Behaviour

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a fast 32-bit one-million-channel time interval spectrometer is proposed based on field programmable gate arrays (FPGAs). The time resolution is adjustable down to 3.33 ns (= T, the digitization/discretization period) based on a prototype system hardware. The system is capable to collect billions of time interval data arranged in one million timing channels. This huge number of channels makes it an ideal measuring tool for very short to very long time intervals of nuclear particle detection systems. The data are stored and updated in a built-in SRAM memory during the measuring process, and then transferred to the computer. Two time-to-digital converters (TDCs) working in parallel are implemented in the design to immune the system against loss of the first short time interval events (namely below 10 ns considering the tests performed on the prototype hardware platform of the system). Additionally, the theory of multiple count loss effect is investigated analytically. Using the Monte Carlo method, losses of counts up to 100 million events per second (Meps) are calculated and the effective system dead time is estimated by curve fitting of a non-extendable dead time model to the results (τNE = 2.26 ns). An important dead time effect on a measured random process is the distortion on the time spectrum; using the Monte Carlo method this effect is also studied. The uncertainty of the system is analysed experimentally. The standard deviation of the system is estimated as ± 36.6 × T (T= 3.33 ns) for a one-second time interval test signal (300 million Tin the time interval).
Rocznik
Strony
601--619
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Nuclear Science & Technology Research Institute (NSRTI), Tehran, Iran
Bibliografia
  • [1] Evans. R.D., (1962). The Atomic Nucleus. McGraw-Hill.
  • [2] Matthews, I.P., Kouris, K., Jones, M.C., Spyrou, N.M. (1980). Theoretical and experimental investigations on the applicability of the Poisson and Ruark-Devol statistical density functions in the theory of radioactive decay and counting. Nuclear Instruments and Methods, 171(2), 369−375.
  • [3] Thie, J.A. (1963). Reactor noise. Rowman and Littlefield, Inc., New York.
  • [4] Denecke, B., de Jonge, S. (1998). An analyzer for pulse-interval times to study high-order effects in the processing of nuclear detector signals. Applied Radiation and Isotopes, 49 (9–11), 1099−1105.
  • [5] Pomme, S. (1998). Time distortion of a Poisson process and its effect on experimental uncertainty. Applied Radiation and Isotopes, 49(9−11), 1213−1218.
  • [6] Arkani, M., Raisali, G. (2015). Measurement of dead time by time interval distribution method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 774, 151−158.
  • [7] Cox, D.R. (1962). Renewal Theory. Methuen, London.
  • [8] Smith., W.L. (1957). On renewal theory, counter problems and quasi-Poisson processes. Math. Proc. of the Cambridge Philosophical Society, 53(1), 175−193.
  • [9] Knoll, G.F. (1999). Radiation detection and measurement. John Wiley & Sons.
  • [10] Arkani, M., Khalafi, H., Arkani, M. (2013). An improved formula for dead time correction of GM detectors. Nukluinika, 58(4), 533–536.
  • [11] Lee, S.H., Gardner, R.P. (2000). A new G-M counter dead time model, Applied Radiation and Isotopes. 53(4–5), 731–737.
  • [12] Arkani, M. Khalafi, H., Arkani, M., (2013). Efficient dead time correction of G-M counters using feed forward artificial neural network. Nukluinika, 58(2), 317−321.
  • [13] Modular Pulse-Processing Electronics. ORTEC Catalog, 2015.
  • [14] Henzler, S. (2010). Time-to-Digital Converters. Springer.
  • [15] Carbone, P., Kiaei, S., Xu, F. (2014). Design, Modelling and Testing of Data Converters.
  • [16] Zieliński, M., Kowalski, M., et al.(2009). Review of single-stage time-interval measurement modules implemented in FPGA devices. Metrol. Meas. Syst., 16(4), 641–648.
  • [17] Kalisz, J., (2004). Review of Methods for Time Interval Measurements with Picosecond Resolution. Metrologia, 41, 17–32.
  • [18] Kang, L., Zhao, L., et al. (2013). A 128-channel high precision time measurement module. Metrol. Meas. Syst., 20(2), 275–286.
  • [19] Arkani, M., Khalafi, H., Vosoughi, N. (2014). Development of an embedded FPGA-based data acquisition system dedicated to zero power reactor noise experiments. Metrol. Meas. Syst., 21(3), 433–446.
  • [20] Arkani, M. (2015). Measurement of Tehran and Esfahan research reactors kinetic parameters using reactor noise diagnostic methods. Amirkabir University of Technology (Tehran Polytechnique), Nuclear Physics Department, Ph.D. Thesis.
  • [21] Arkani, M., Khalafi, H., Vosoughi, N., Khakshournia, S. (2015). A FPGA based Time Analyser for Stochastic Methods in Experimental Physics. Instruments and Experimental Techniques, 58(3), 350−358.
  • [22] Grzelak, S., Kowalski, M., et al. (2014). High resolution time-interval measurement systems applied to flow measurement. Metrol. Meas. Syst., 21(1), 77–84.
  • [23] Grzelak, S., Kowalski, M., et al. (2014). Ultrasonic flow measurement with high resolution. Metrol. Meas. Syst., 21(2), 305–316.
  • [24] Zieliński, M., Kowalski, M., et al. (2009). Accumulated Jitter Measurement of Standard Clock Oscillators. Metrol. Meas. Syst., 16(2), 259–266.
  • [25] Artyukh, Y., Boole, E. (2011). Jitter Measurement on the Basis of High-Precision Event Timer. Metrol. Meas. Syst., 18 (3), 453–460.
  • [26] Zaworski, Ł., Chaberski, D., et al. (2012) Quantization error in time-to-digital converters. Metrol. Meas. Syst., 19(1), 115−122.
  • [27] CYCLONE-III, A Cyclone III Device Handbook, Altera Corporation, 2008.
  • [28] QUARTUS-II, Handbook Version 9.1, Altera Corporation, 2009.
  • [29] NIOS II Software Developer’s Handbook Version 11.1, (2011). ALTERA Corporation.
  • [30] Hashimoto, K., Ohya, K., Yamane, Y. (1996). Dead-time measurement for radiation counters by variance-to-mean method. Journal of Nuclear Science and Technology, 33(11), 863–868.
  • [31] Jordan, D.R., McBeth, G.W., (1978). An experimental test of Müller statistics for counting systems with a non-extending dead time. Nuclear Instruments and Methods, 155(3), 557–562.
  • [32] Choi, H.D. (2009). Counting statistics distorted by two dead times in series which end with an extended type dead time. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 599(2–3), 251−259.
  • [33] Arkani, M., Khalafi, H., Vosoughi, N. (2013). A flexible multichannel digital random pulse generator based on FPGA. World Journal of Nuclear Science and Technology, 3(4), 109−116.
  • [34] Landau, D.P. (2000). A guide to Monte Carlo simulations in statistical physics. Cambridge University Press.
  • [35] Dunn, W.L. (2012). Exploring Monte Carlo methods. Elsevier, Academic Press.
  • [36] Mathwroks. (2014). MATLAB reference guide.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026c1de5-2c06-44d2-a905-bde945ed56b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.