PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The mathematical characteristic of the Laplace contour filters used in digital image processing. The third order filters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Laplace operator is a differential operator which is used to detect edges of objects in digital images. This paper presents the properties of the most commonly used third-order 3x3 pixels Laplace contour filters including the difference schemes used to derive them. The authors focused on the mathematical properties of the Laplace filters. The basic reasons of the differences of the properties were studied and indicated using their transfer functions and modified differential equations. The relations between the transfer function for the differential Laplace operator and its difference operators were described and presented graphically. The impact of the corner elements of the masks on the results was discussed. This is a theoretical work. The basic research conducted here refers to a few practical examples which are illustrations of the derived conclusions.We are aware that unambiguous and even categorical final statements as well as indication of areas of the results application always require numerous experiments and frequent dissemination of the results. Therefore, we present only a concise procedure of determination of the mathematical properties of the Laplace contour filters matrices. In the next paper we shall present the spectral characteristic of the fifth order filters of the Laplace type.
Rocznik
Strony
art. no. e23, 2022
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
Bibliografia
  • 1. Appadu, A.R., Dauhoo, M.Z., Rughooputh, S.D. D.V. (2008). Control of numerical effects of dispersion and dissipation in numerical schemes for efficient shock-capturing through an optimal Courant number. Comput. Fluids, 37(6), 767–783. DOI: 10.1016/j.compfluid.2007.07.018.
  • 2. Appadu, A.R., and Dauhoo, M.Z. (2011). The Concept of Minimized Integrated Exponential Error for Low Dispersion and Low Dissipation Schemes. Int. J. Numerical Methods Fluids, 65(5), 578–601.DOI: 10.1002/fld.2206.
  • 3. Appadu, A.R. (2014). Optimized Low Dispersion and Low Dissipation Runge-Kutta Algorithms in Computational Aeroacoustics. Appl. Math. Inf. Sci., 8(1), 57–68. DOI: 10.12785/amis/080106.
  • 4. Borawski, M. (2004). Preliminary digital image processing. In: Methods of Comparative Navigation (in Polish), 88–119. Gdynia: Andrzej Stateczny GTN.
  • 5. Burger, W., and Burge, M.J. (2008). Digital Image Processing. An Algorithmic Introduction Using Java. Texts in Computer Science. New York: Springer Science ¸ Business Media.
  • 6. Burger, W., and Burge, M.J. (2009a). Principles of Digital Image Processing. Core Algorithms. London: Springer – Verlag.
  • 7. Burger, W., and Burge, M.J. (2009b). Principles of Digital Image Processing. Fundamental Techniques. London: Springer – Verlag.
  • 8. Burger, W., and Burge, M.J. (2013). Principles of Digital Image Processing. Advanced Methods. London: Springer – Verlag.
  • 9. Canny, J.F. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6), 679–695. DOI: 10.1109/TPAMI.1986.4767851.
  • 10. Fryskowska, A., Kedzierski, M., Wierzbicki, D. et al. (2019). Analysis of imagery interpretability of open sources radar satellite imagery. In: Proceedings of 12th Conference on Reconnaissance and Electronic Warfare Systems (CREWS). Oltarzew (2019). DOI: 10.1117/12.2525013.
  • 11. Gonzalez, R.C., and Woods, R.E. (2018). Digital Image Processing, 4 edn. Pearson International Edition. New Jersey: Pearson Education.
  • 12. Harris, C., and Stephens, M. (1988). A combined corner and edge detector. In Taylor C.J. (Eds.) Proceedings of the Alvey Vision Conference, p. 23.1–23.6. DOI: 10.5244/C.2.23.
  • 13. Hazarika, D., Nath, V.K., and Bhuyan, M. (2016). SAR Image Despeckling Based on Combination of Laplace Mixture Distribution with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain. Procedia Comput. Sci., 87, 140–147. DOI: 10.1016/j.procs.2016.05.140.
  • 14. Hidaka, K. (1951). Stencils for integrating partial differential equations of mathematical physics. Sci. Math. Jpn., 11(1).
  • 15. Jähne, B., Scharr, H., Körkel, S. et al. (1999). Principles of filter design. In: Handbook of computer vision and applications, 2, 125–151. Academic Press.
  • 16. Jähne, B. (2002). Digital Image Processing. Berlin: Springer – Verlag.
  • 17. Jasinski, J., Kroszczynski, K., Rymarz, C. et al. (1999). Satellite Images of Atmospheric Processes Moulding Weather (in Polish). Warsaw: PWN.
  • 18. Kamgar-Parsi, B., Kamgar-Parsi, B., and Rosenfeld, A. (1999). Optimally isotropic Laplacian operator. IEEE Trans. Image Process., 8(10), 1467–1472. DOI: 10.1109/83.791975.
  • 19. Knighting, E. (1955). Reduction of truncation errors in symmetrical operators. Technical Memorandum of the Joint Numerical Weather Prediction Unit, 3(5).
  • 20. Krawczyk, K., Winnicki, I., Jasinski, J. et al. (2012). Matrices of selected Laplace contour filters used for processing digital data (in Polish). Bulletin of the Military University of Technology, 61(1), 145–170.
  • 21. Kupidura, A, and Kupidura, P. (2009). Investigating urban sprawl using remote sensing and GIS technology. In: Proceedings of 29th EARSeL Symposium, 224–230. Chania, Greece (2009).
  • 22. Kupidura, P., Koza, P., and Marciniak, J. (2010). Mathematical Morphology in Remote Sensing (in Polish). Warsaw: PWN.
  • 23. Kurczynski, Z., Rozycki, S., and Bylina, P. (2017). Mapping of polar areas based on high-resolution satellite images: the example of the Henryk Arctowski Polish Antarctic Station. Reports Geod. Geoinf., 104(1), 65–78. DOI: 10.1515/rgg-2017-0016.
  • 24. Le Dret, H., and Lucquin, B. (2016). Partial Differential Equations: Modeling, Analysis and Numerical Approximation. International Series of Numerical Mathematics. London: Springer-Birkhauser. DOI: 10.1107/978-3-319-27067-8.
  • 25. Lerat, A., and Peyret, R. (1973). Sur l’origine des oscillations apparaissant dans les profils de choc calcules par des methodes aux differences (in French). C. R. Acad. Sc. Paris A., 276, 759–762.
  • 26. LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems. Philadelphia: SIAM. DOI: 10.1137/1.9780898717839.
  • 27. Li, J., and Chen, Y.T. (2009). Computational Partial Differential Equations Using MATLAB®. Boca Raton: Chapman & Hall/CRC.
  • 28. Li, J., and Yang, Z. (2011). Heuristic modified equation analysis on oscillations in numerical solutions of conservation laws. SIAM J. Numer. Anal., 49, 2386–2406. DOI: 10.1137/110822591.
  • 29. Li, J., and Yang, Z. (2013). The von Neumann analysis and modified equation approach for finite difference schemes. Appl. Math. Comput., 225, 610–621. DOI: 10.1016/j.amc.2013.09.046.
  • 30. Lynch, D.R. (2010). Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course. New York: Springer Science ¸ Business Media. DOI: 10.1121/1.1577548.
  • 31. Mallat, S. (2009). A Wavelet Tour of Signal Processing. The Sparse Way. Amsterdam: Academic Press.
  • 32. Marr, D., and Hildreth, E. (1980). Theory of edge detection. Proc. Royal Soc., 207, 187–217. DOI: 10.1098/rspb.1980.0020.
  • 33. Miyakoda, K. (1960). Numerical calculation of Laplacian and Jacobian using 9 and 25 gridpoint systems. J. Meteorol. Soc. Japan, 2, 94–105.
  • 34. Ogura, Y. (1958). On the truncation error which arises from the use of finite differences in the Laplacian operator. J. Meteorol., 15(5), 475–480. DOI: 10.1175/1520-0469(1958)015<0475:OTTEWA 2.0.CO;2.
  • 35. Parker, J.R. (2011). Algorithms for Image Processing and Computer Vision. Indianapolis: Wiley.
  • 36. Perona, P., and Malik, J. (1990). Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7), 629–639 (1990). DOI: 10.1109/34.56205.
  • 37. Perona, P. (1998). Orientation diffusions. IEEE Trans. Image Process., 7(3), 457–467. DOI: 10.1109/83.661195.
  • 38. Petrou, M., and Petrou, C. (2011). Image Processing. The Fundamentals. Chichester: John Wiley & Sons.
  • 39. Peyret, R., and Taylor, T.D. (1983). Computational Methods for Fluid Flow. New York: Springer-Verlag.
  • 40. Pitas, I. (2000). Digital Image Processing Algorithms and Applications. New York: John Wiley & Sons.
  • 41. Platzman, G.W. (1979). The ENIAC Computations of 1950-Gateway to Numerical Weather Prediction. Bull. Am. Meteorol. Soc. April, 302–312. DOI: 10.1175/1520-0477(1979)060<0302:TECOTN 2.0.CO;2.
  • 42. Pokonieczny, K., and Moscicka, A. (2018). The influence of the shape and size of the cell on developing military passability maps. ISPRS Int. J. Geoinf., 7(7). DOI: 10.3390/ijgi7070261.
  • 43. Pratt, W.K. (2007). Digital Image Processing. New York: Wiley-Interscience.
  • 44. Prewitt, J.M.S. (1970). Object enhancement and extraction. In: B.S. Lipkin and A. Rosenfeld. (Eds.) Picture Processing and Psychopictorics, 75–150. New York: Academic Press.
  • 45. Reda, K., and Kedzierski, M. (2020). Detection, classification, and boundary regularization of buildings in satellite imagery using faster edge region convolutional neural networks. Remote Sens., 12(14). DOI: 10.3390/rs12142240.
  • 46. Richardson, L.F. (1910). The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Proc. R. Soc. London Ser. A, 210, 307–357.
  • 47. Scharr, H. (2000). Optimal operators in digital image processing. Ph.D. thesis. Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany.
  • 48. Scharr, H., and Weickert, J. (2000). An Anisotropic Diffusion Algorithm with Optimized Rotation Invariance. In: Proceedings of 22th DAGM-Symposium, Kiel, Germany, 460–467. DOI: 10.1007/978-3-642-59802-9.
  • 49. Shokin, Y., Winnicki, I., Jasinski, J. et al. (2020). High order modified differential equation of the Beam-Warming method. Part II: The dissipative features. Russ. J. Numer. Anal. Math. Model., 35(3), 175–185. DOI: 10.1515/rnam-2020-0014.
  • 50. Shuman, G.F. (1956). The computational difficulties fundamental to the balance equation. Technical Memorandum of the Joint Numerical Weather Prediction Unit, 3(6).
  • 51. Stateczny, A., and Nowakowski, M. (2006). Analytical radar image compression methods for comparative navigation. Scientific Journals of the Maritime University of Szczecin, 8, 93–101.
  • 52. Stateczny, A., Kazimierski, W., and Kulpa, K. (2020). Radar and sonar imaging and processing. Remote Sens., 12(11). DOI: 10.3390/rs12111811.
  • 53. Stateczny, A., Kazimierski, W., and Kulpa, K. (2021). Radar and sonar imaging and processing (2nd edition). Remote Sens., 13(22). DOI: 10.3390/rs13224656.
  • 54. Strang, G., and Fix, G. (2008). An Analysis of the Finite Element Method. New Edition, 2nd edn. Wellesley-Cambridge Press.
  • 55. Strikwerda, J.C. (2004). Finite Difference Schemes and Partial Differential Equations. Philadelphia: SIAM.
  • 56. Susmitha, A., Ishani, M., Divya, S. et al. (2017). Implementation of Canny’s edge detection technique for real world images. Int. J. Eng. Trends Technol., 48(4), 176–181. DOI: 10.14445/22315381/IJETT-V48P232.
  • 57. Tadeusiewicz, R., and Korohoda, P. (1997). Computer Analysis and Image Processing (in Polish). Progress of Telecommunication Foundation Publishing House, Krakow (1997). Retrieved from http://winntbg.bg.agh.edu.pl/skrypty2/0098/.
  • 58. Thompson, P.D. (1955a). Reduction of truncation errors in the computation of geostrophic advection and other Jacobians. Technical Memorandum of the Joint Numerical Weather Prediction Unit, 1(12).
  • 59. Thompson, P.D. (1955b). Reduction of truncation errors in the computation of geostrophic vorticity, the Laplacian operator, and its inverse. Technical Memorandum of the Joint Numerical Weather Prediction Unit, 2(9).
  • 60. Waheed, W., Deng, G., and Liu, B. (2020). Discrete Laplacian Operator and its Applications in Signal Processing. IEEE Access, 8, 89692–89707. DOI: 10.1109/ACCESS.2020.2993577.
  • 61. Wang, X. (2007). Laplacian Operator-Based Edge Detectors. IEEE Trans. Pattern Anal. Mach. Intell., 29(5), 886–890. DOI: 10.1109/TPAMI.2007.1027.
  • 62. Warming, R.F., and Hyett, B.J. (1974). The modified equation approach to the stability and accuracy of finite difference methods. J. Comp. Phys., 14(2), 159–179. DOI: 10.1016/0021-9991(74)90011-4.
  • 63. Weickert, J., and Scharr, H. (2002). A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent., 13(1–2), 103–118. DOI: 10.1006/jvci.2001.0495.
  • 64. Winnicki, I., Jasinski, J., and Pietrek, S. (2019). New approach to the Lax–Wendroff modified differentia equation for linear and non-linear advection. Numer. Methods Partial Differ. Equ., 35(6), 2275–2304. DOI: 10.1002/num.22412.
  • 65. Winnicki, I., Pietrek, S., Jasinski, J. et al. (2022). The mathematical characteristic of the fifth order Laplace contour filters used in digital image processing. Adv. Geod. Geoinf., 71(2), article no. e26. DOI: 10.24425/agg.2022.141300.
  • 66. Wojtkowska, M., Kedzierski, M., and Delis, P. (2021). Validation of terrestrial laser scanning and artificial intelligence for measuring deformations of cultural heritage structures. Measurement, 167. DOI: 10.1016/ j.measurement.2020.108291.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026a220f-0c87-453e-b020-fab515c65296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.