Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present the concept of Partial Factorization [1] and discuss its possible applications to the Finite Element method. We consider: (1) reduction of the element tangent matrix, which is particularly important for mixed/enhanced elements and (2) reduction of the sub-domain matrices of the Domain Decomposition (DD) equation solvers run either sequentially on a single machine or in parallel on a cluster of computers. We demonstrate that Partial Factorization can be beneficial for these applications.
Czasopismo
Rocznik
Tom
Strony
163--170
Opis fizyczny
Bibliogr. 11 poz., tab., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- 1. Petra C.G. et al., An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization, SIAM J. Sci. Comput., 36(2): C139–C162, 2014.
- 2. Jarzębski P., Wiśniewski K., Taylor R.L., On paralelization of the loop over elements in FEAP, Computational Mechanics, 56(1): 77–86, 2015.
- 3. Jarzębski P., Wiśniewski K., Performance of the parallel FEAP in calculations of effective material properties using RVE, [in:] Advances in Mechanics, Kleiber M. et al. [Eds.], Taylor & Francis, London, pp. 241–244, 2016.
- 4. Jarzębski P., Wiśniewski K., Application of partial factorization for domain decomposition solver, In preparation, 2016.
- 5. MacNeal R.H., Harder R.L., A proposed standard set of problems to test finite element accuracy, Finite Element in Analysis and Design, 1: 3–20, 1985.
- 6. Press W.H. et al., Numerical Recipes in Fortran 77, Cambridge Univeristy Press, 1999.
- 7. Anderson E. et al., LAPACK Users’ Guide, SIAM, Philadelphia, 1999.
- 8. HSL 2013, A collection of Fortran codes for large scale scientific computation, http://www.hsl.rl.ac.uk/.
- 9. Wiśniewski K., Finite Rotation Shells. Basic Equations and Finite Elements for Reissner Kinematics, Springer, 2010.
- 10. Wiśniewski K., Turska E., Four-node mixed Hu-Washizu shell element with drilling rotation, Int. J. Num. Meth. Engng., 90(4): 506–536, 2012.
- 11. Gupta A., WSMP: Watson Sparse Matrix Package, IBM Research Report, Watson, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-025c8107-67c5-480a-a7c5-f9776e66d62e