PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of the gear’s geometry measurement with various measuring systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza pomiaru geometrii koła zębatego różnymi systemami pomiarowymi
Języki publikacji
EN
Abstrakty
EN
The paper presents a comparison between contact and optical measuring systems, which can be implemented to measure the shape and dimensional accuracy. The comparison included the MarSurf XC20 contact system, the iNEXIVE optical microscope and the MCA II measuring arm with the MMDx100 laser head as well as the ATOS II Triple Scane structured light scanner. The measurements were conducted on a part of a gear rim. The assessment of the measuring accuracy in relation to the nominal model was performed in the GOM Inspect software. The parametric model of the gear created in the NX software was adopted as the nominal model. According to the obtained reports, it results that the MarSurf XC20 is the most accurate 2D measuring system whereas the ATOS II Triple Scane is the most accurate 3D measuring system.
PL
W artykule przedstawiono porównanie pomiarowych systemów; stykowych oraz optycznych, możliwych do wykorzystania przy weryfikacji dokładności wymiarowo-kształtowej. Porównanie obejmowało system stykowy MarSurf XC20, mikroskop optyczny iNEXIVE , ramię pomiarowe MCA II z głowicą laserową MMDx100 oraz skaner światła strukturalnego ATOS II Triple Scane. Pomiary przeprowadzono na fragmencie wieńca koła zębatego. Ocenę dokładności pomiaru w odniesieniu do modelu nominalnego przeprowadzono w programie GOM Inspect. Za model nominalny przyjęto model parametryczny koła zębatego stworzonego w systemie NX. Według otrzymanych raportów wynika, że najbardziej dokładnym systemem pomiarowym 2D jest MarSurf XC20, a systemem pomiarowym 3D ATOS II Triple Scane.
Rocznik
Tom
Strony
39--46
Opis fizyczny
Bibliogr. 33 poz., il. kolor., fot., wykr.
Twórcy
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • [1] ASME B89.4.22-204 Methods for Performance Evaluation of Articulated Arm Coordinate Measuring Machines.
  • [2] Barbero B.R., Ureta E.S. 2011. „Comparative study of different digitization techniques and their accuracy”. CAD Computer Aided Design 43(2): 188-206.
  • [3] Brajlih T., Tasic T., Drstvensek I. et al. 2011. „Possibilities of using three-dimensional optical scanning in complex geometrical inspection”. Strojniski Vestnik/ Journal of Mechanical Engineering 57(11): 826-33.
  • [4] Brown Gordon M., Song M. 2000. „Overview of three-dimensional shape measurement using optical methods”. Optical Engineering 39(1): 10.
  • [5] Budzik G, Przeszłowski Ł., Wieczorkowski M. et al. 2018. „Analysis of 3D printing parameters of gears for hybrid manufacturing”. In: Proceedings of the 21st international ESAFORM conference on material forming, AIP Conf. Proc. 1960.
  • [6] Budzik G. 2011. „Metody szybkiego prototypowania”. Metale & Nowe technologie 1-2: 78 - 80.
  • [7] Budzik G., Pisula J., Dziubek T., Sobolewski B., Zabornia M. 2011. „Zastosowanie systemów CAD / RP / CMM w procesie projektowania kół zębatych walcowych o zębach prostych”. Mechanik 21: 988.
  • [8] Budzik G., Turek P. 2018. „Improved accuracy of mandible geometry reconstruction at the stage of data processing and modeling”. Australasian Physical and Engineering Sciences in Medicine 41(3): 687-95. http://dx.doi.org/10.1007/s13246-018-06645.
  • [9] Chen Y., Chen J. 2019. „Optical inspection system for gear tooth surfaces using a projection moiré method”. Sensors 19(6).
  • [10] Cheng X.J., Jin W. 2006. „Study on reverse engineering of historical architecture based on 3D laser scanner”. Journal of Physics: Conference Series 48(1): 843-49.
  • [11] Dury M.R., Woodward S.D., Brown S.B., McCarthy M.B. 2016. „Surface Finish and 3D optical scanner measurement performance for precision engineering”. Proceedings - ASPE 2016 Annual Meeting (November): 167-72.
  • [12] Dziubek T. 2012. „Analiza współrzędnościowych systemów pomiarowych kół zębatych”. Politechnika Rzeszowska.
  • [13] Dziubek T. 2018. „Application of coordination measuring methods for assessing the performance properties of polymer gears”. Polimery/Polymers 63(1): 49-52.
  • [14] Dziubek T., Oleksy M. 2017. „Application of ATOS II optical system in the techniques of rapid prototyping of epoxy resin-based gear models”. Polimery/Polymers 62(1): 44-52.
  • [15] Gao J., Chen X., Yilmaz O., Gindy N. 2008. „An integrated adaptive repair solution for complex aerospace components through geometry reconstruction”. International Journal of Advanced Manufacturing Technology 36(11-12): 1170-79.
  • [16] Geng Z., Bidanda B. 2017. „Review of reverse engineering systems-current state of the art”. Virtual and Physical Prototyping 12(2): 161-72.
  • [17] GOM INSPECT. 2018. „Evaluation Software for 3D Measurement Data”. www.gom.com/3d-software/ gom-inspect.html.
  • [18] Guerra M.G., Lavecchia F., Maggipinto G. 2019. „Measuring techniques suitable for verification and repairing of industrial components: A comparison among optical systems”. CIRP Journal of Manufacturing Science and Technology 27: 114-23.
  • [19] Guo X., Shi Z., Yu B., Zhao B., Li K. 2020. „3D measurement of gears based on a line structured light sensor”. Precision Engineering 61: 160-69.
  • [20] Habrat W., Zak M., Krolczyk J., Turek P. 2018. „Comparison of geometrical accuracy of a component manufactured using additive and conventional methods”. Lecture Notes in Mechanical Engineering (201519): 765-76
  • [21] Intwala A.M., Magikar A. 2016. „A review on process of 3D Model Reconstruction”. International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016: 2851-55.
  • [22] Leopold J., Günther H. 2002. „Fast 3D-Measurement of Gear Wheels”. Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Vol. 4900: 185-94.
  • [23] Li F., Stoddart D., Zwierzak I. 2017. „A Performance Test for a Fringe Projection Scanner in Various Ambient Light Conditions”. Procedia CIRP 62: 400-404.
  • [24] Peters J., Goch G., Günther A. 2000. „Helical gear measurement using structured light”. Proceedings of the XVI IMEKO World Congress: 2-5.
  • [25] PN-ISO 1328-1 Przekładnie zębate walcowe. Dokładność wykonania według ISO. Odchyłki jednoimiennych boków zębów.
  • [26] Quinsat Y., Dubreuil L., lartigue C. 2017. „A novel approach for in-situ detection of machining defects”. International Journal of Advanced Manufacturing Technology 90(5-8): 1625-38.
  • [27] Ratajczyk E. 2005. „Współrzędnościowa technika pomiarowa.” Oficyna Wydawnicza Politechniki Warszawskiej.
  • [28] Ratajczyk E. 2012. „Współrzędnościowe ramiona pomiarowe w zastosowaniach przemysłowych”. Pomiary, Automatyka, Robotyka 3: 33-39.
  • [29] Ratajczyk E., Adamczyk A. 2015. „Porównanie dokładności wybranych skanerów laserowych”. Mechanik 12: 945-948.
  • [30] Ratajczyk E., Woźniak A. 2016. „Współrzędnościowe systemy pomiarowe”. Oficyna Wydawnicza Politechniki Warszawskiej.
  • [31] Sitnik R., Karaszewski M. 2008. „Optimized point cloud triangulation for 3D scanning systems”. Machine Graphics and Vision 17(4): 349-71.
  • [32] VDI/VDE 2634 - Optische 3-D-Messsysteme, Bildgebende Systeme mit flächenhafter Antastung.
  • [33] Voisin S. 2007. „Study of ambient light influence for three-dimensional scanners based on structured light”. Optical Engineering 46(3): 030502.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-025b50dd-1a3b-4677-8db0-3d49771b4619
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.