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ABSTRACT  

In its mathematical essence, the task of determining ship’s position coordinates, is to 

minimize appropriately defined goal function. This paper proposes to use the method of 

conjugate gradient for this purpose. The reason is that calculations may be performed in 

some seconds time because Microsoft and Apache implemented the conjugate gradient 

method as a tool called the Solver and embedded this tool in their widely offered and 

popular spreadsheets, namely Excel and the Open Office Calc, respectively. Further in 

this paper it is shown how to precisely assess errors of ship’s position coordinates with 

the Monte Carlo method that employs the Solver. 

Keywords: 

determining ship’s position, the Least Square method, conjugate gradient, the Monte Carlo 

method. 

INTRODUCTION 

Let us begin with recalling the basics. In its mathematical essence, the task 

of determining ship’s position coordinates oo  , , is to employ the Least Square 

method that consists in minimizing the following goal function [Kopacz et al., 

2007].  
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where: 

n  — the number of reference stations each of which produces 

one summand, 

ii  ,  — coordinates positions of particular reference stations, 

nii ,...,...,2,1 , 

 aii dd  — measured distances to these reference stations,  

nii ,...,...,2,1 , aid  — actual distances, 

  — an error of measurement.  

 

This error is assumed to be the random variable with expected value equal 

to zero and the standard deviation equal to   in all measurements. This is a strong 

assumption that is often violated in practice where standard deviations i  are unequal. 

If so, it is recommended to minimize the following weighted goal function 
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It is a pity that values i  are unknown. And there is no simple remedy 

for this. 

This paper proposes to use the method of conjugate gradient [Fletcher, 

Reeves, 1964] to minimize (1). The reason is that all the very long calculations 

needed will be performed in some seconds time. It is possible because Microsoft 

and Apache implemented the conjugate gradient method as a tool called the Solver 

and embedded this tool in their widely offered environments, namely Excel and 

Open Office Calc, respectively.  

Further in this paper it is shown how to precisely assess errors of ship’s 

position coordinates with the Monte Carlo method that employs the Solver. The main 

aim of this paper is to assess how number of reference stations impacts errors of 

determining of ship’s position. 

INPUT DATA 

Input data related to reference stations were gathered in Table 1. 
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Tab. 1. A list of reference stations 

i  
Location of  

reference station 

Distance to Coordinates 

id [Nm] i  i  

1 Hel 6,3894 54o 36,004’ 18o 48,768’ 

2 Gdynia 7,3418 54o 32,018’ 18o 32,839’ 

3 Gdańsk 6,2890 54o 23,986’ 18o 41,784’ 

4 Górki Zachodnie 10,1622 54o22,233’N 18o 46,733’E 

 

Tab. 2. Actual ship’s coordinates 

Coordinates 

 0

o  
 0

o  

54o 30,000’ 18o 45,000’ 

USING THE SOLVER 

Figure 1a shows how the worksheet is arranged of for single use i.e. not 

for Monte Carlo simulations. Figure 1b shows haw the worksheet is arranged for 

multiple use, i.e. for the Monte Carlo simulation. However for its dimension the 

figure is located at the end of this paper. Figures are intended to enable readers 

to acquaint with the worksheet. They may turn out  insufficient to prepare fully 

working worksheet by Excel novices. 

Figures 2a to 2c show what particular cells of Excel worksheet contain. 

Figures 3a and 3b instruct how to set up the Solver. 

 

 
Fig. 1a. Arrangement of the worksheet for single use 
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Fig. 2a. The content of cells that comprise input data range 

 

 
Fig. 2b. The content of cells that comprise the left segment calculation range 

 

 
Fig. 2c. The content of cells that comprise the right segment calculation range 

 

 
Fig. 3a. Setting the Solver 



ANTONI DRAPELLA, WACŁAW MORGAŚ 

10 ANNUAL OF NAVIGATION 

 
Fig. 3b. Setting Solver options 

 

Figure 4 gives an overview of the goal function having a minimum that 

has to be localized to determine ship’s position. The minimum is situated in a deep 

valley with steep slopes. It may cause the method to diverge when guesses are 

taken too far from the solution. A symptom of bad convergence is when a value 

displayed in the B3 cell is greater than 1E-5. Figure 1a exemplifies a case of 

good convergence. 

 

 
Fig. 4. An overview of the goal function 
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AN ERROR ASSESSMENT OF SHIP’S POSITION 

It is assumed that positions of reference stations are purely deterministic 

variables i.e. are free of error. In contrast distances to reference stations are assumed 

to be random variables that follow the Normal distribution. Let us remember that 

Normal distribution has two parameters: the location parameter and the scale 

parameter. The location parameters of distance distributions are set equal to exact 

distances. Two variants of calculating the scale parameter are considered. The scale 

parameter is equated with   introduced in Section 1. 

Variant I:  

The scale parameter was assumed to be a fraction of the scale parameter. 

This fraction is named variability ratio ( vr ). In the other words 

 parameterlocationvrparameterscale  ,  (2a) 

where %75.0...,%,30.0%,15.0vr  were taken in accordance with [IALA 2015].  

This variant violates the assumption about  of Section 1, but reflects what we 

face in common practice. 

Variant II:  

The scale parameter is constant 

 sea mileparameterscale  05.0 .  (2b) 

Variant II fulfill the  — related assumption already considered in Variant I. 

Below two VBA (Visual Basic for Application) procedures are presented. 

The first named Proc01 accomplish the Monte Carlo method. The second named 

Solver makes Solver to find a minimum of the goal function being repeatedly 

called by Proc01. Instructions that comprise Proc01 are commented very detailedly. 

These comments are addressed to novices in practice of the Monte Carlo method. 

NEW CONCEPT OF RADAR POSITIONING 

Sub Proc01() 
Dim i As Integer, j As Integer, k As Integer, v As Integer 

Dim d0(5) As Single, sd(5) As Single: ‘Matrices that contain location 
and scale parameters. 
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Dim Ss As Single: ‘Adder of uniformly distributed random numbers. 
Used to obtain normal random numbers. 

Randomize Timer: ‘This statement causes that seeds for internal 
generator of uniformly distributed random numbers are formed 

on the basis of data obtained from computer’s internal clock. 

Application.ScreenUpdating = False: ‘This statement „freezes” a screen 
until all the whole Monte Carlo procedure will be completed. It 

considerably shortens realization of this procedure.  

Let d0(1) = Cells(13, 10): Let d0(2) = Cells(13, 11): Let d0(3) = Cells(13, 12): Let 

d0(4) = Cells(13, 13): Let d0(5) = Cells(13, 14): ‘Reading location parame-
ters from the worksheet. 

Let sd(1) = Cells(15, 10): Let sd(2) = Cells(15, 11): Let sd(3) = Cells(15, 12): Let 

sd(4) = Cells(15, 13): Let sd(5) = Cells(15, 14): Reading scale parameters 
from the worksheet. 

Range("B21:C1020").Select: Selection.ClearContents: ‘Clears block of cells 

that is a container of Monte Carlo results. For v = 1 To 1000: 
‘Looping over subsequent simulations. 

Application.StatusBar = v: Shows simulation number I the status bar. 

Let Cells(v + 20, 1) = v: ‘Writes in subsequent simulation number to the 
worksheet. 

For i = 1 To 5: ‘Looping over reference stations. 

Let Ss = -6: ‘Sets an initial value to the adder (see relevant 
comment in declarations) 

For j = 1 To 12: ‘Looping over summands that form Normal random 
number. 

Let Ss = Ss + Rnd(1): ‘Subsequent uniformly distributed random number 
added. 

Next j 
‘Now Ss contains the N(0,1) normal random number i.e. with location 

parameter equal to zero and scale parameter equal to one. 

Let Cells(5 + i, 2).Value = sd(i) * Ss + d0(i): ‘Converting N(0,1) into Normal 
random numbers having location parameters equal to actual dis-

tances and scale parameters equal to fractions stated above in 

the main text. 

Next i 

Let Cells(3, 2) = Cells(16, 8).Value: Cells(3, 3) = Cells(17, 8).Value: Setting 
“guesses” i.e. values from which Solver will start looking for 

a minimum of the goal function. 

SOLVER: ‘Calling the Solver procedure. 
‘Solver placed guesses with results  

Let Cells(v + 20, 2).Value = Cells(3, 2).Value : Results are transferred to 
the container of Monte Carlo results. 

Let Cells(v + 20, 3).Value = Cells(3, 3).Value 
Next v 
‘The Monte Carlo procedure is ended. 

‘The set of instructions below sorts results in ascending order. 

Range("B21:C1020").Select 
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ActiveWorkbook.Worksheets("Monte_Carlo_3").Sort.SortFields.Clear 
ActiveWorkbook.Worksheets("Monte_Carlo_3").Sort.SortFields.Add Key:=Range( _ 
        "B21:B1020"), SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:= _ 
        xlSortNormal 
    With ActiveWorkbook.Worksheets("Monte_Carlo_3").Sort 
        .SetRange Range("B21:C1020") 
        .Header = xlGuess 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
Application.ScreenUpdating = True 
End Sub 
 
Sub SOLVER() 
Dim wynik As Long 
SolverOptions MaxTime:=100, Iterations:=200, Precision:=0.00000001, _ 
AssumeLinear:=False, StepThru:=False, Estimates:=2, Derivatives:=2, _ 
SearchOption:=2, IntTolerance:=5, Scaling:=True, Convergence:=0.0001, _ 
AssumeNonNeg:=False 
SolverOk SetCell:="$D$3", MaxMinVal:=2, ValueOf:="1", ByChange:="$B$3:$C$3" 
Let wynik = SolverSolve(True) 
End Sub 

 

Figures 5a and 5b and relates to Variant I. Figure 6 relates to Variant II. 

 

 

Fig. 5a. The variability ratio of distances versus variability ratio of  coordinate 
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Fig. 5b. The variability ratio of distances versus variability ratio of  coordinate 

 

 

Fig. 6. The variability ratio of and coordinates 

 

Table 3a–3d and 4a, 4b contain statistical characteristics of distributions 
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Tab. 3a. Notation used in tables 3b–3d 

Symbol Meaning Symbol Meaning 

 Mean value  Skewnes 

 Standard deviation  Kurtosis 

 

Tab. 3b. Statistical characteristics of distributions of ship’s positions;  

reference stations taken into account: 1-2 

 
 Variability ratio of distances to reference stations 

 0,15% 0,30% 0,45% 0,60% 0,75% 

S
h

ip
's

 c
o

o
rd

in
a

te
s 





 30.000 30.004 29.9983 30.0006 30.0029 

 0.1408 0.1339 0.1379 0.1326 0.1336 

 0.0321 –0.0586 0.0818 0.0221 0.1660 

 –0.0427 0.0831 –0.1275 0.1084 –0.2274 





 44.999 44.999 45.0003 44.9998 44.9992 

 0.0337 0.0320 0.03297 0.0317 0.0319 

 –0.0985 –0.0087 –0.1449 –0.0890 –0.0737 

 0.0135 0.1088 –0.0691 0.1550 –0.2070 

 

Tab. 3c. Reference stations taken into account: 1-2-3 

 
 Variability ratio of distances to reference stations 

 0,15% 0,30% 0,45% 0,60% 0,75% 

S
h

ip
's

 c
o

o
rd

in
a

te
s 





 29.9947 30.0017 30.0017 29.9945 30.0027 

 0.1327 0.1303 0.1372 0.1390 0.1365 

 0.0688 –0.0144 0.0234 0.1317 0.0693 

 –0.271 –0.2358 –0.2010 0.1110 –0.0019 





 45.0012 44.9995 44.9973 45.0012 44.9992 

 0.03167 0.0311 0.0329 0.0332 0.0327 

 –0.1277 –0.0404 –0.0848 –0.2021 –0.1365 

 –0.1616 –0.1275 –0.1666 0.1812 0.0645 
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Tab. 3d. Reference stations taken into account: 1-2-3-4 

 
 Variability ratio of distances to reference stations 

 0,15% 0,30% 0,45% 0,60% 0,75% 
S

h
ip

's
 c

o
o

rd
in

a
te

s 





 29.9981 29.9998 29.9998 30.0050 30.0036 

 0.1381 0.1353 0.1342 0.1352 0.1348 

 –0.0006 0.0732 0.0595 0.1085 0.1285 

 0.0733 0.02500 –0.1889 –0.2612 0.1732 





 45.0004 45.0000 45.0003 44.9987 44.9991 

 0.0312 0.0319 0.0321 0.0324 0.0323 

 –0.0634 –0.1392 –0.1193 –0.1688 –0.1986 

 0.0967 0.0816 –0.1346 –0.2041 0.2700 

 

Tab. 4a. The coefficient of correlation between and coordinates, Variant I 

Ref. Variability ratio of distances to reference stations 

stations 0,15% 0,30% 0.45% 0.60% 0.75% 

1-2 –0,996 –0,998 –0,997 –0,995 –0,995 

1-2-3 –0,998 –0,997 –0,998 –0,999 –0,997 

1-2-3-4 –0,995 –0,999 –0,997 –0,996 –0,997 

 

Tab. 4b. The coefficient of correlation  between and coordinates, Variant II 

 
Ref. stations 

1-2 1-2-3 1-2-3-4 

 +0.676 +0.635 +0,668 

CONCLUSIONS 

1. A general, qualitative conclusion derived from Figures 5a, 5b and Figure 6 is 

rather surprising. When distance errors are so small as [2] requires them to 

be, then number of reference stations has no noticeable impact on position 

accuracy. The differences observed on the figures are statistically insufficient 

and there is no trend observed. This conclusion holds both to Variant I and II.  



COMPUTATIONAL AND STATISTICAL ASPECTS OF DETERMINING SHIP’S POSITION 

24/2017 17 

2. As one can read from Figures 5a, 5b and Figure 6 the Variability Ratio of posi-

tion coordinates in Variant I are much greater than in Variant II. One may

find as a punishment for violating   related assumption.

3. Measures of skewnes and kurtosis (see Tables 3a–3c) are very small. It means

that position coordinates are random variables that follow (like distance errors)

the Normal distribution.

4. The second surprising result is that when one passes from Variant I to Variant II

correlation coefficient not only significantly changes its value but even changes

its sign!
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STRESZCZENIE 

Matematyczna istota wyznaczania współrzędnych pozycji okrętu to minimalizacja odpo-

wiednio zdefiniowanej funkcji celu. Artykuł proponuje wykorzystanie do tego metody 

gradientu sprzężonego. Dzięki niej obliczenia mogą być wykonane w kilka sekund, ponieważ 

Microsoft i Apache zaimplementowały metodę gradientu sprzężonego jako narzędzie 
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nazwane Solver i umieściły je w swych szeroko oferowanych i popularnych arkuszach 

kalkulacyjnych: Excelu i Open Office Calc. W artykule pokazano także, jak precyzyjnie 

określić błędy oszacowania współrzędnych pozycji okrętu metodą Monte Carlo. 

 

 

 

 

 

 


