PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza hydrauliczna płukania upustowego sieci wodociągowej

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Hydraulic analysis of the waternetwork relief flushing
Języki publikacji
PL
Abstrakty
PL
W sytuacji ciągłego zmniejszania się poborów wody, utrzymanie odpowiedniej jakości wody w sieci staje się coraz trudniejsze. Najbardziej rozpowszechnioną metodą usuwania zdeponowanych zanieczyszczeń w rurociągach jest płukanie upustowe wykorzystujące hydranty pożarowe. Planowanie efektywnej sekwencji następujących po sobie płukań możliwe jest przy wykorzystaniu modeli komputerowych sieci wodociągowych. W pracy zbudowano model sieci wodociągowej miasta Poddębice w programie EPANET 2. Opracowany model skalibrowano w oparciu o zapisy produkcji i zużycia wody oraz pomiary ciśnień w kilkunastu punktach sieci. Ciśnienia zmierzono w trakcie upustów wody przez hydranty. Przeprowadzono symulację płukania wybranego odcinka sieci. W wyniku symulacji wyznaczono chwilowe wartości prędkości przepływu wody i według przyjętego kryterium wyznaczono zasięgi płukań. Kryterium wyznaczono w oparciuo zależność opisującą ruch cząstek zanieczyszczeń uwzględniający mechanizmy turboforezy i turbulentnej dyfuzji. Ponadto przeanalizowano różne warianty realizowania następujących po sobie płukań oraz wybrano wariant optymalny.
EN
In the case of the continuous decrease in consumption of water, maintaining water quality in the network becomes increasingly difficult. The most common method of removing deposited particles in pipelines is flushing hydrants using relief. Planning an efficient sequence of successive rinses is possible with the use of computer models of water supply network. For this purpose, the model of water supply network of the city Poddębice was created in Epanet 2. The model was calibrated based on the records of production and consumption of water and pressure measurements at several points in the network. Pressure was measured during water hydrants discounts. Then the simulation of flushing the network section was performed. As a result of the simulation was set instantaneous velocity of water flow, and according to accepted criteria set ranges rinses. The criterion determined based on the dependence that describes the motion of the particles pollutants taking into account the mechanisms of turbophoresis and turbulent diffusion. Also analyzed different variants of consecutive rinses and selected the optimal variant.
Rocznik
Tom
Strony
435--442
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Katedra Inżynierii Chemicznej, Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka
autor
  • Katedra Inżynierii Chemicznej, Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka
Bibliografia
  • [1] Antoun, E. N., Dyksen, j. E., and Hiltebrand, D. J., 1999. Unidirectional flushing: A powerful tool. J. Am. Water Works Assoc. 91(7): 62–71.
  • [2] Berlamont, J., van Goethem, J., 1984. Avoiding mud accumulation in harbours and their entrances (in Dutch), (Eds), Hydrualic laboratory KU, Leuven, Belgium.
  • [3] Boxall, J. B., Saul, A. J., 2005. Modeling Discolouration In notable water distribution systems. Journal of environment al engineering,.
  • [4] Boxall, J. B., Saul, A. J., Inwin, D. M., Dewis, N., and Gunstead, j.D. Water quality In distribution systems: Rehabilitation and maintenance strategies. Advances In Water Supply Management, Proc., Int. Conf. on Computing and Control In the Water Industry, Swets & Zeitlinger, London, U.k>, 397–404. 2003a.
  • [5] Boxall, J. B., Skipworth, P. J. and Saul, A. J., 2001. A novel approach to modeling sediment movement in distribution mains based on particle characteristics. Water software system: Theory and applications, Proc., Int. Conf. on Computing and Control in Water Industry, Research Studies, Baldock, Hertfordshire, U.K..
  • [6] Boxall, J. B., Skipworth, P. J., and Saul, A. J., 2004. Modeling the impact of reduced hydraulic capacity of pipes in distributon system. Water Sci. Technol.: Water Works Assoc., 96(4), 161–169.
  • [7] Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O. 1975. Transfer of particle in nonisotropic air turbulence. Journal of the Atmospheric Sciences 32, 565–568.
  • [8] Clark, R. M., Grayman, W. M., Males, R. M., and Hess, A. F., 1993. Modeling contaminant propagation In drinking-water distribution systems. J. Environ. Eng. 119(2), 349–354.
  • [9] Clement, J., Hayes, M., Sarin, P., Kriven, W. M., Bebee, J., Jim, K., Beckett, M., Snoeyink, V.L., Kirmeyer, G. J., and Pierson, G., 2002. Development of red water control strategies, AWWA Research Foundation and American Water Works Association, Denver.
  • [10] Davidson, P. . 2004. Turbulence. An Introduction for Scientists and Engineers. Oxford University Press.
  • [11] Ellison, D., Durancean, S. G., Ancel, S. G., Deagle, G., and McCoy, R.. 2003. Investigation of pipe cleaning methods. Rep. No. 90938, AWWa Research Foundation and American Water Works Association, Denver.
  • [12] Fokeer, S., Kingman, S., Lowndes, I., Reynolds, A. 2004. Characterization of the cross sectional particle concentration distribution in horizontal dilute flow conveying – a review. Chemical Engineering and Processing 43, 677–691.
  • [13] Friedman, M., et. al. . 2005. Development of distribution system water quality optimization plans. AWWA Research Foundation, Denver.
  • [14] Friedman, M., et. al. 2003., Establishing site-specific flushing velocities. AWWA Research Foundation, Denver.
  • [15] Friedman, M., Kirmeyer, G., and Antoun, E. 2002. Developing and implementing a distribution system flushing program. J. Am. Water Works.Assoc., 94(7), 48–56.
  • [16] Gauthier, V., Barbeau, B., Millette, R., and Prévost, M. 2001. Suspended particle in the drinking water of two distribution systems. Water Sci. Technol.: Water Supply. 1(4), 237–245.
  • [17] Grabarczyk 1997, Cz. Przepływy cieczy w przewodach, ENVIROTECH.
  • [18] Guha, A. 1997. A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science 28(8), 1517–1537.
  • [19] Guha, A., 2008Transport and deposition of particle in turbulent and laminar flow. Annual Review of Fluid Mechnaics 40, 311–341.
  • [20] Hadinoto, K., Jones, E. N., Yurteri, c,. Curtis, J. S., 2005. Reynolds number dependence of gas-particle flows. International Journal of Multiphase Flow 31, 416–434.
  • [21] Kirmeyer, G. J., et. al., 2000. Guidance manual for maintaining distribution system water quality. Rep. No, 90798, AWWA Research Foundation and American Water Works Association, Denver.
  • [22] Knapik, L., Bajer, J., 2011. Wodociągi: Podręcznik dla studentów wyższych szkół technicznych. Politechnika Krakowska.
  • [23] Le Chevallier, M. W., Babcock, T. M., and Lee, R. J. 1987. Examination and characterization of distribution system biofilms. Appl. Emviron. Microbiol., 53(12), 2714–2724.
  • [24] Lin, J., and Coller, B. A. 1997. Aluminum in water supply, Part 3: Domestic tap Walters. J. Aust. Water Assoc., 24, 11–13.
  • [25] Oberoi, K. 1994. Distribution flushing program: The benefits and result. AWWA Annual Conf. American Water Works Association, New York, 579–597.
  • [26] Poulin, A., Mailhot, A., Periche, N., Delorme, L., and Villeneuve J., P. 2010. Planning Unidirectional Flushing Operations as a Response to Drinking Water Distribution System Contamination. Jounral of Water Resources Planning and Management, 6, 647–657.
  • [27] Prince, R., Ryan, G. and Goulter, I. . 2003. Role of operational changes In forming discolored water in water distribution system. Advances In water supply management. Proc., Int. Conf. on Computing and Control In the Water Industry, Swets & Zeitlinger, London, U.K., 451–457.
  • [28] Rossman, L. A. 2000EPANET 2 user manual. EPA/600/R-00/057, Washington DC.
  • [29] Russel, S. 1993. Water industry instrument handbook – Book 4 turbidity, WRc plc, Wiltshire, U.K.
  • [30] Sippola, M. R., Nazaroff, W. W., 2002. Particle Deposition from Turbulent Flow: Review of Published Research and its Applicability to Ventilation Ducts in Commercial Buildings. Tech. Rep. LBNL-51432. Lawrence Berkeley National Laboratory.
  • [31] Slaats, N. 2002. Processes involved In generation of discolored water. Rep. No. KOA 02.058. American Water Works Association Research Foundation, The Netherlands.
  • [32] Sly. L. I., Hodgkinson, M. C., and Arunpairojana, V1990. Deposition of manganese in a drinking water distribution system. Appl. Environ. Microbiol., 56(3), 628–639.
  • [33] Smith, S. E., Holt, D. M., Delanoue, A., Colbourne, J. S., Chamberlain, A. H. L., Lloyd, B. J., 1999. A pipeline testing facility for the examination of pipe-wall deposits and red water events in drinking water. J. CIWEM 13, 7–15.
  • [34] Soldati, A., Marchioli, C., 2009. Physics and model ling of turbulent particle deposition ad entrainment: review of systematic study. International Journal of Multiphase Flow 35, 827–839.
  • [35] Sowiński J., Srogosz M., 2011. Analiza skutków łączenia lokalnych sieci wodociągowych, Inżynieria Ekologiczna 26, 237–247.
  • [36] Stephenson, G. 1989. Removing loose deposits from water mains: Operational guidelines. A source document for the water mains rehabilitation manual, Water Research Centre, Swindon, U.K.
  • [37] van Thienen, P., Vreeburg, J. H. G., Blokker, E. J. M., 2011. Radial transport processes as a precursor to particle deposition in drinking water distribution systems. Water research 45(2011), 1807–1817.
  • [38] Verbanck, M. A., 2000. Computing near-bed solids transport in Sewer and similar sedyment-carrying open-channel flow. Urban Waters 2, 277–284.
  • [39] Vreeburg, J. H. G.,. 2007. Discolouration in drinking water systems: a particular approach. PhD, Civil Engineering and Geosciences, Delft University of Technology, Delft, 183 pp.
  • [40] Vreeburg, J., Boxall, J., 2007. Discolouration in notable water distribution systems: a review. Water Research 41, 519–529.
  • [41] Walski, T. M. . 1991. Understanding solids transport in water distribution systems. Proce., Water Quality Modeling In Distribution Systems, AWWA Research Foundation, 305–309.
  • [42] Walski, T., Hartell, W., Wu, Z., Cliun, K., and Davis, K. 2008. What happens when you flush your system. AWWA DSS Conf. and Exposition, Water Works Association, Anaheim, Calif., 469–465.
  • [43] Young, J. Leeming, A., 1997. A theory of particle deposition in turbulent pipe flow. Journal of Fluid Mechanics 340, 129–159.
  • [44] Zou, X.-Y., Cheng, H., Zhang, C.–L., Zhao, Y.–Z., 2007. Effects of the Magnus and Saffman forces on the saltation trajectories of Sand grain. Geomorphology 90, 11–22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02522c1b-77c8-43c4-a000-63060aeb5bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.