PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transistor-based temperature measuring device

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Tranzystorowy układ do pomiaru temperatury
Języki publikacji
EN
Abstrakty
EN
The schematic diagrams of the temperature measuring device based on transistor structures are presented in the paper. The temperature dependence of collector current without and with linearization of the conversion function is analysed. The linearization method based on compensation current formation is proposed. This allowed to reduce the temperature measurement error up to ± 0.006°C over the temperature ranges 40… 60°C and 60… 80°C and up to 0.08°C over the temperature range 10… 90°C.
PL
W artykule zostały przedstawione schematy miernika temperatury opartego na strukturach tranzystorowych. Została przeanalizowana zależność prądu kolektora od temperatury bez i przy zastosowaniu linearyzacji funkcji przetwarzania. Zaproponowano metodę linearyzacji opartą na formowaniu prądu kompensacyjnego, która pozwoliła zmniejszyć błąd pomiaru temperatury do ± 0,006°C w zakresach temperatury 40… 60°C i 60… 80°C oraz do ±0,08°C w zakresie 10… 90°C.
Rocznik
Strony
4--7
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Lublin University of Technology, Department of Electronics and Information Technologies, Lublin, Poland
Bibliografia
  • [1] Boano C.A., Lasagni M., Romer K., Lange T.: Accurate temperature measurements for medical research using body sensor networks. 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops 2011, 189–198.
  • [2] Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating. Przegląd Elektrotechniczny 5/2019, 110– 113 [http://doi.org/10.15199/48.2019.05.27].
  • [3] Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K.: Development of signal converter of thermal sensors based on combination of thermal and capacity research methods. Eastern-European Journal of Enterprise Technologies 4/9(94)/2018, 36–42 [http://doi.org/10.15587/1729-4061.2018.139763].
  • [4] Chen W., Dols S., Oetomo S.B., Feijs L.: Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors.
  • Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 2010, 188–194 [http://doi.org/10.1145/2221924.2221960].
  • [5] Crawford D.C., Hicks B., Thompson M.J.: Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J. Med. Eng. Technol. 30(4)/2006, 199–211.
  • [6] Goswami A., Bezboruah T., Sarma K.C.: Design of an embedded system for monitoring and controlling temperature and light. International Journal of Electronic Engineering Research 1(1)/2009, 27–36 [http://doi.org/10.18178/joace.4.5.331-339].
  • [7] Goumopoulos C.: A high precision, wireless temperature measurement system for pervasive computing applications. Sensors 18(10)/2018, 3445 [http://doi.org/10.3390/s18103445].
  • [8] Hans V.H.: High-precision measurement of absolute temperatures using thermistors. Proceedings of the Estonian Academy of Sciences, Engineering. 13(4)/2007, 379–383.
  • [9] Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proceedings of SPIE 9662, 2015, 966247-1–966247-8 [http://doi.org/10.1117/12.2205449].
  • [10] Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Electrotechniczny 88(4A)/2012, 169–171.
  • [11] Hotra O., Boyko O.: Tranzystorowo-rezystancyjny układ kompensacji wpływu temperatury wolnych końców termopary. Proceedings of Electrotechnical Institute 249/2011, 21–27.
  • [12] Marcelli M., Piermatte V., Madonia A., Marcelli U.: Design and application of new low-cost instruments for marine environmental research. Sensors 14/2014, 23348–23364 [http://doi.org/10.3390/s141223348].
  • [13] Papageorgiou C., Sadriwala A., Almoalem M., Sheedy C., Hajjar A.: Environmental Control of a Greenhouse System Using NI Embedded Systems Technology. Journal of Automation and Control Engineering 4(5)/2016, 331– 339.
  • [14] Prathyusha K., Suman M.C.: Design of embedded systems for the automation of drip irrigation. International Journal of Application or Innovation in Engineering & Management – IJAIEM 1(2), 2012. 2319–4847 [http://doi.org/ 10.13140/RG.2.2.18561.15207].
  • [15] Ross-Pinnock D., Maropoulos P.G.: Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(5)/2016, 793–806.
  • [16] Spencer B., Al-Obeidat F.: Temperature Forecasts with Stable Accuracy in a Smart Home. 7th International Conference on Ambient Systems, Networks and Technologies / The 6th International Conference on Sustainable Energy Information Technology ANT/SEIT 2016, 726–733 [http://doi.org/10.1016/j.procs.2016.04.160].
  • [17] Thilagavathi G.: Online farming based on embedded systems and wireless sensor networks. International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) 2013, 71–74 [http://doi.org/10.1109/ICCPEIC.2013.6778501].
  • [18] Wunsch C.: Global ocean integrals and means, with trend implications. Annual review of marine science 8/2016, 1–33 [http://doi.org/10.1146/annurev-marine- 122414-034040].
  • [19] Xie L., Gao Z.H., Gao W., Jin X.A: CMOS Temperature-to-Digital Sensor With ±0.5° Inaccuracy from -55° to 150°. IEEE 19th International Conference on Communication Technology – ICCT, 2019, 1481–1485 [http://doi.org/10.1109/ICCT46805.2019.8947211].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-024ebe67-65e2-463f-8a62-956a2f48aa56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.