PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pullout behavior of steel reinforcements used for mechanically stabilized earth structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pullout behavior of mechanically stabilized earth (MSE) structures is very complicated and depends on many parameters which related to the backfill soil properties, the reinforcement characteristics and the interaction between them. This paper investigates the pullout behavior of many soil reinforcements under static and repeated loading. Four types of steel reinforcements were studied: Strip, W-shaped, ribbed and punched. The results obtained show that the change of the shape of reinforcement may improve the pullout resistance of MSE structures. Therefore, the best performance was obtained by the ribbed and the punched reinforcements, under static loading as well as repeated loading.
Czasopismo
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • LMMS Laboratory, Civil Engineering Department, University of M’sila, Algeria
  • LMMS Laboratory, Civil Engineering Department, University of M’sila, Algeria
Bibliografia
  • ABDELOUHAB A., DIAS D., Freitag N., 2011, Numerical analysis of the behaviour of mechanically stabilized earth walls reinforced with different types of strips, Geotextiles and Geomembranes, 29 (2), pp. 116–129. Available at: http://www.sciencedirect.com/science/article/pii/S0266114410000932 [Accessed: March 5, 2016].
  • AL-ASHOU M., 1981, The behaviour of reinforced earth under repeated loading. Available at: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236883 [Accessed: February 17, 2016].
  • BOURGEOIS E., SOYEZ L., LE KOUBY A., 2011, Experimental and numerical study of the behavior of a reinforced-earth wall subjected to a local load, Computers and Geotechnics, 38 (4), pp. 515–525. Available at: http://dx.doi.org/10.1016/j.compgeo.2011.02.017
  • HANNA T., TOUAHMIA M., 1991, Comparative behaviour of metal and Tensar geogrid strips under static and repeated loading. In: Geosynthetics Conference, Atlanta, Georgia, USA. Available at: http://trid.trb.org/view.aspx?id=1177064 [Accessed: February 17, 2016].
  • HORPIBULSUK S. et al., 2011, Performance of an earth wall stabilized with bearing reinforcements, Geotextiles and Geomembranes, 29 (5), pp.514–524. Available at: http://dx.doi.org/10.1016/j.geotexmem.2011.05.002.
  • JEWELL R., MILLIGAN G., 1984, Interaction between soil and geogrids. In: Symp. on Polymer Grid Reinforcement in Civil Engineering. Science and Engineering Research Council and Netlon Limited. Available at: http://www.icevirtuallibrary.com/doi/abs/10.1680/pgr.02425.0005 [Accessed: February 17, 2016].
  • KHEDKAR M.S., MANDAL J.N., 2009, Pullout behaviour of cellular reinforcements, Geotextiles and Geomembranes, 27 (4), pp. 262–271. Available at: http://dx.doi.org/10.1016/j.geotexmem.2008.12.003.
  • LCPC-SETRA, 1979, Les ouvrages en terre armée, recommandations et règles de l’art Ministère.
  • MEDDAH A., MERZOUG K., 2017, Feasibility of using rubber waste fibers as reinforcements for sandy soils, Innovative Infrastructure Solutions, 2 (1), p. 5. Available at: http://dx.doi.org/10.1007/s41062-017-0053-z
  • MEDDAH A., SAHLI M., SAFER S., 2015, Etude de l’effet de la rugosité des renforcements sur le comportement des massifs en terre armée. In: Journées d’étude de Génie Civil. M’sila University, Algeria, pp. 54–59.
  • MORACI N. et al., 2014, Soil Geosynthetic Interaction: Design Parameters from Experimental and Theoretical Analysis, Transportation Infrastructure Geotechnology, 1 (2), pp. 165–227. Available at: http://link.springer.com/10.1007/s40515-014-0007-2
  • MORACI N., CARDILE G., 2009, Influence of cyclic tensile loading on pullout resistance of geogrids embedded in a compacted granular soil, Geotextiles and Geomembranes, 27 (6), pp. 475–487. Available at: http://dx.doi.org/10.1016/j.geotexmem.2009.09.019
  • MOSALLANEZHAD M., BAZYAR M.H., SABOOR M.H., 2015, Novel strip-anchor for pull-out resistance in cohesionless soils, Measurement, 62, pp. 187–196. Available at: http://www.sciencedirect.com/science/article/pii/S0263224114005156 [Accessed: May 31, 2015].
  • TATSUOKA F. et al., 2014, Geosynthetic-Reinforced Soil Structures for Railways in Japan, Available at: http://link.springer.com/10.1007/s40515-013-0001-0
  • TIN N. et al., 2011, Factors affecting kinked steel grid reinforcement in MSE structures, Geotextiles and Geomembranes, 29 (2), pp. 172–180. Available at: http://dx.doi.org/10.1016/j.geotexmem.2010.10.013
  • TOUAHMIA M., 2014, Interaction mechanisms of soil-geosynthetic reinforcement, Int. J. GEOMATE, 7 (13), pp. 969–973. Available at: http://www.geomatejournal.com/user/download/215/969-973-3164-Mabrouk-Sept-2014.pdf [Accessed: February 17, 2016].
  • TOUAHMIA M., ROUILI M., HANNA T., 1997, A comparison of Geogrid Strips und Metallic Reinforcing Strips unter Static und Repeated Loading. In: Geosynthetics Asia 97. pp. 337–641.
  • YU Y., DAMIANS I.P., BATHURST R.J., 2015, Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions, Computers and Geotechnics, 65, pp. 164–174. Available at: http://dx.doi.org/10.1016/j.compgeo.2014.12.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-024a40cd-c9b2-4a20-915b-0f4cad78c984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.