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ABSTRACT
The wave propagation characteristics of functionally graded (FG) double-beams are 
investigated by use of Euler-Bernoulli beam theory. Two beams are connected by a 
Winkler foundation. The wave propagation characteristics like frequency, phase and 
group velocities are obtained for different wave numbers and material properties. Four 
frequencies are obtained for functionally graded double-beam system. It is obtained 
that flexural and axial waves are coupled for FG double-beams.
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INTRODUCTION

Since functionally graded materials (FGM) 
have high strength, temperature resistance, cor-
rosion resistance and toughness, they are widely 
used in structures such as beams and plates. In 
functionally graded materials, properties are con-
tinuously changing in one or more directions. 
Due to the continuous stress distribution along 
a specific direction in the structures, they have 
many applications in industrial and engineering 
fields. They have a steady micro-structure char-
acteristics changing from one material to another 
to obtain the optimum desired parameters in the 
structure. Double-beam systems that consist of 
two parallel beams are connected by an elastic 
layer and have many usages in mechanical, civil 
and aeronautical applications such as double-
beam cranes, double-beam spectrometers, float-
ing-slab tracks, railway tracks, pipelines, bridge 
spans and aircraft wing spars. Due to high tem-
perature resistance and continuous stress distribu-
tion, studies in recent years have focused on the 
problems of structures which are constructed of 
functionally graded materials. Abu-Hilal [1] stud-
ied the dynamic response of a double-beam sys-
tem consisting two elastic homogenous isotropic 

Euler-Bernoulli beams and obtained the dynamic 
deflections for different values of speed, damping 
ratio and stiffness parameters. Arefi and Zenkour 
[2] used Timoshenko beam model for a function-
ally graded magneto-electric nano-beams resting 
on Visco-Pasternak foundation and studied the ef-
fect of material inhomogeneities and wave num-
ber on the wave propagation of the nano-beam 
in different modes. Ariaei et al [3] investigated 
the dynamic response of an elastically connected 
multiple-beam system by using Timoshenko beam 
theory and obtained the midpoint deflections for 
different values of moving load velocity and the 
stiffness of elastic connections. Aydogdu and 
Taskin [4] investigated free vibration behavior of 
simply supported functionally graded beams by 
use of classical, parabolic and exponential shear 
deformation beam theories and obtained the free 
vibration frequencies for different materials and 
length to thickness ratios. Chen et al [5] proposed 
a mixed method that combines the state space 
method and the differential quadrature method for 
the bending and free vibration analysis of thick 
beams resting on a Pasternak elastic foundation. 
They obtained the mid-span deflections for dif-
ferent boundary conditions and investigated the 
effects of Poisson’s ratio on the fundamental fre-

Received: 	 2017.05.15
Accepted: 	 2017.08.01
Published: 	 2017.09.03



Advances in Science and Technology Research Journal  Vol. 11 (3), 2017

144

quencies. Deng et al [6] established the dynamic 
stiffness matrix of a double-functionally graded 
Timoshenko beam system on Winkler-Pasternak 
elastic foundation under axial loading and ob-
tained the exact natural frequency and buckling 
load. De Rosa and Maurizi [7] investigated the 
exact free vibration frequencies of Euler beam on 
two-parameter elastic soil with flexible ends under 
a concentrated mass acting along the span. They 
normalized the equation of motion by introducing 
two different reference frames and simplified the 
frequency equation as much as possible. Hussein 
and Hunt [8] discussed modelling of floating-slab 
tracks on rigid foundations. They used two con-
tinuous resilient layers such as upper and lower 
Euler-Bernoulli beams in the model to obtain the 
displacements that are used to calculate the cut on 
frequencies and critical velocities of the track. Li 
et al [9] developed an analytical model of small-
scaled functionally graded beams for the flexural 
wave propagation analysis and investigated the 
dispersion relation between the phase velocity 
and wave number. Shamalta and Metrikine [11] 
investigated the steady-state dynamic response 
of an embedded railway track by use of a model 
composing of two Euler-Bernoulli beams, a Kir-
choff plate, two continuous visco-elastic elements 
that connect the beams and plate and 2-D elastic 
foundation. Vu et al [13] presented an exact solu-
tion for solving the vibration of a double-beam 
system consisting of a main beam with an applied 
force and an auxiliary beam with a distributed 
spring and dashpot between two beams and sub-
jected it to a harmonic excitation. Ying et al [15] 

THEORY AND FORMULATION

In the study, double-beam system is assumed to be constructed of two parallel beams with a length 
of L, unit width, thickness of h and Winkler elastic layer between them. Figure 1 represents the double-
beam geometry and coordinate system which is placed in the mid-plane.

Upon denoting U, V and W as the displacement fields in x-, y- and z-axis respectively and assuming 
that the displacement along y-axis is zero, the displacement fields are assumed in parallel with the gen-
eral shear deformation shell theory introduced by Soldatos and Timarci [12],

(1)

where:	u, u1 and w are three unknown displacement functions of the middle surface of the beam 
and subscript “,” denotes the differentiation with relevant axis. Ø(z) represents the shape 
function that determines the distribution of the transverse shear stress and strain. More-
over, the choice of different shape functions will lead to different beam theories. The 
displacement fields yield the following kinematic relations:

 
Fig. 1. Double-beam geometry and coordinate system

presented a two-dimensional theory of elastic-
ity in the bending and free vibration analysis of 
functionally graded beams resting on a Winkler-
Pasternak elastic foundation. They investigated 
the effects of several parameters such as gradient 
index, aspect ratios and foundation parameters on 
mechanical behavior of FGM beams. Zhang et al 
[16] investigated the flexural wave propagation 
of piezo electric functionally graded nano-beams 
with thermal and surface effects. According to 
the author’s knowledge, wave propagation char-
acteristics of functionally graded double-beam 
haven’t been investigated. In this study, the wave 
propagation characteristics of functionally graded 
double-beams are developed on the basis of Eul-
er-Bernoulli beam theory. By use of the analytical 
model, the wave propagation characteristics such 
as frequency, phase and group velocities are ob-
tained and the variation of these parameters with 
respect to wave numbers are illustrated.
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          (2)

Here, prime denotes the differentiation with respect to z-axis. The state of stresses for each nth layer 
is given by generalized Hooke’s law as follows:

(3)

Qij is the transformed reduced stiffness depending on the mechanical properties of material such as elas-
ticity modulus E(z) and Poisson’s ratio υ and given in the following form:

          
(4)

υ is assumed as a constant in the present study since the constituents of functionally graded beam are 
approximately identical. Elasticity modulus E(z), is assumed to be changing through the thickness of 
the beam according to power law form which is introduced by Wakashima [14] and given as follows:

(5)

ET(i) and EB(i) are the elasticity modulus of beam at top and bottom surfaces respectively and m indicates 
the power-law index. Top surface of the beam is assumed to be constructed of ceramics whereas the bot-
tom surface is aluminum. In Figure 2, the variation of the elasticity modulus with respect to the beam 
thickness is presented for different power-law indices.

 
Fig. 2. The variation of elasticity modulus with beam 

thickness

In the study, shape function is chosen as 0 so 
as to correspond to Euler-Bernoulli beam theory. 
When the stress-strain relations are substituted 
into the force and moment definitions:

        
(6)

the following constitutive equations are obtained 
as follows:

(7)

where:	Aij, Bij and Dij denote the extensional, 
coupling and bending stiffnesses respec-
tively. The extensional, coupling and 
bending stiffnesses are defined in the 
following way:

(8)

The governing equations of the beam can be 
obtained variationally by use of Hamilton’s prin-
ciple as follows:

(9)

where:	 the subscript “,tt” denotes the derivation 
with respect to time. ρi is the density func-
tion of the beam and defined in the fol-
lowing form:

(10)
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By neglecting the rotary inertias, the equations of motion of a double-beam system with an elastic 
layer, can be defined as (Filiz and Aydogdu [10]),

(11a)

(11b)

Superscripts (1) and (2) represent the first and second beam, respectively and c denotes the 
stiffness of elastic medium. For the wave propagation analysis, the displacement functions are 
considered as:

          (12)

Aj and Bj are the amplitudes of wave motion, k is the wave number and ω is the frequency. The equations 
of motion can be rewritten by the use of displacement functions depending on frequencies and wave 
number as,

(13a)

(13b)

The determinant of the coefficient matrix of homogeneous system of equations obtained above will 
give dispersion relations. Thus, the problem may be considered as an eigenvalue problem and in order to 
solve an eigenvalue problem computationally, the equations can be written in a matrix form as follows:

(14)

RESULTS AND DISCUSSION

For the doublty modulus, density and power-law indices. In Table 1, the material properties and 
power-law indices are presented for three different cases. In the first case, the double-beam is assumed 
to be constructed of the same materials, thus, the same material properties are used. In order to do 
this, power-law indices are chosen as 0 so as to correspond to an isotropic double-beam. In the second 

Table 1. The material properties and power-law indices of double-beams for three different cases

Case
E [GPa]

ρ [kg/m3] m
ET EB

1
Beam 1 70 70 2770 0
Beam 2 70 70 2770 0

2
Beam 1 380 70 2770 1
Beam 2 380 70 3700 1

3
Beam 1 380 70 2770 1
Beam 2 380 70 3700 2
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and third cases, the double-beam is assumed to be 
constructed of two beams with different material 
properties and power-law indices.

In Figure 3-4-5, the variation of frequency 
(rad/s), phase and group velocities (m/s) with 
wave numbers are presented respectively and 
four dispersion relations are obtained. Higher two 
of these roots are for flexural waves and lower 
two curves correspond to axial waves for this iso-
tropic case. Dispersion curves of flexural (axial) 
cases are approximately coincident. Difference 
between flexural and axial dispersion curves in-
creases as k wave number increases. In Figure 
6-7-8 and 9-10-11, wave dispersion curves are 
given for FG double-beams. It should be noted 
that curves for flexural and axial wave, are not 
coincident for this case. This is due to Bij coupling 
terms, nonzero Bij terms lead to the coupling be-
tween flexural and axial waves as it can be seen 
from (Eq. 11-13). Difference between flexural and 

 
Fig. 3. The variation of frequency with wave number 

for Case 1

Fig. 4. The variation of phase velocity with wave 
number for Case 1 

Fig. 5. The variation of group velocity with wave 
number for Case 1

Fig. 6. The variation of frequency with wave number 
for Case 2

Fig. 7. The variation of phase velocity with wave 
number for Case 2

axial dispersion curves increases with increasing 
wave number. Similar behavior is observed for 
phase and group velocities. It is interesting to note 
that flexural dispersion curves get further whereas 
axial dispersion curves get closer with increasing 
wave number k for Fig. 9-10-11.
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CONCLUSIONS

In this study, wave propagation analysis of 
functionally graded double-beam with Winkler 
elastic foundation is performed. Wave propaga-
tion characteristics like frequency, phase and 
group velocities are obtained for different wave 
numbers and three different cases. Initially, an 
isotropic double-beam system is considered. 
Four frequencies are obtained and the isotropic 
curves are coincident as expected. In the second 
and third cases, FG double-beams are considered 
for different material properties and power-law 
indices. A coupling between flexural and axial 
waves is observed. This study can be extended 
by use of a higher order beam theory for differ-
ent parameters.
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