PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

1.28 Tbps DWDM optical network design using a dispersion compensating distributed Raman amplifier over S-band

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A 100 km long dense wavelength division multiplexed optical network design with a capacity of 1.28 Tbps is proposed in this paper. The novelty of this work is the use of a dispersion compensating fibre as a Raman amplifier in the S-band for a high-capacity dense wavelength division multiplexing network. The transmission is accomplished auspiciously in the wavelength range from 196 THz to 202. 35THz. The coupling of a Raman amplifier made the realisation of the S-band possible in the network, as the erbium-doped fibre amplifier is competent for amplification in C- and L-bands only. Further, a pump coupler is used for multiple pumping to enlarge the gain spectrum for a high-capacity optical network. The performance analysis of the network is carried out systematically in terms of bit error rate (BER), eye diagram, Q-factor, and optical signal to noise ratio (OSNR). The results demonstrate that the proposed set-up shows adequately low BER, sufficient Q-factor values, wide eye-opening, and commendable OSNR for all receiving channels.
Rocznik
Strony
art. no. e146104
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Islamic University of Science and Technology, Kashmir, India
autor
  • Department of Electronics and Communication Engineering, Islamic University of Science and Technology, Kashmir, India
Bibliografia
  • [1] Ghosh, C. & Priye, V. Di pe io compe tio i 24×20 Gbp DWDM system by cascaded chirped FBGs. Optik 164, 335-344 (2018). https://doi.org/10.1016/j.ijleo.2018.03.037
  • [2] Gul, B. & Ahmad, F. Comparative Performance Analysis of Tanh-Apodized Fibre Bragg Grating and Gaussian-Apodized Fibre Bragg Grating as Hybrid Dispersion Compensation Model. in IoT and Analytics for Sensor Networks (eds. Nayak, P., Pal, S. & Peng, S. L.) 71-82 (Springer, 2022). https://doi.org/10.1007/978-981-16-2919-8_7
  • [3] Li, P., Shuisheng, J., Yan fengping, Tigang, N. & Zhi, W. Long-haul WDM system through conventional single mode optical fibre with dispersion compensation by chirped fibre Bragg grating. Opt. Commun. 222, (1-6) 169-178 (2003). https://doi.org/10.1016/S0030-4018(03)01556-60
  • [4] Meena, M. L. & Meena, D. Performance analysis of DWDM optical etwo k with di pe io compe tio tech ique fo 4×8 GBPS transmission system. Microelectronics J. 4, 613-617 (2018). http://doi.org/10.21917/ijme.2018.0106
  • [5] Neheeda, P., Pradeep, M. & Shaija, P. J. Analysis of WDM system with dispersion compensation schemes. Procedia Comput. Sci. 93, 647-654 (2016). https://doi.org/10.1016/j.procs.2016.07.254
  • [6] Gul, B. & Ahmad, F. Multistage Amplified and Dispersion Compensated Ultra-long Haul DWDM Link with High OSNR. in 2022 Fourth ICERECT 1-4 (IEEE, 2022). https://doi.org/10.1109/ICERECT56837.2022.10060237
  • [7] Islam, M. N. S-band Raman Amplifiers. in Raman Amplifiers for Telecommunications 2 301-352 (Springer, 2004). https://doi.org/10.1007/978-0-387-21585-3_1
  • [8] Islam, M. N. Overview of Raman Amplification in Telecommunications. Raman Amplifiers for Telecommunications 1 1-34 (2004). https://doi.org/10.1007/978-0-387-21583-9_1
  • [9] Semrau, D., Sillekens, E., Killey R. I. & Bayvel, P. The Benefits of Using the S-Band in Optical Fibre Communications and How To Get There. in 2020 IEEE Photonics Conference (IPC) 1-2 (IEEE, 2020). https://doi.org/10.1109/IPC47351.2020.9252426
  • [10] Jiang, X. Chapter 15-Optical Performance Monitoring in Optical Long-Haul Transmission Systems. in Optical Performance Monitoring (ed. Chan, K. C. K.) 423-446 (Elsevier, 2010). https://doi.org/10.1016/B978-0-12-374950-5.00015-8
  • [11] Bayart, D. Optical Amplification. In Undersea Fibre Communication Systems (ed. Chesnoy, J.) 95-155 (2002). https://doi.org/10.1016/B978-012171408-6/50006-4
  • [12] Gul, B. & Ahmad, F. Design and performance investigation of Gaussian apodized FBG as hybrid dispersion compensation module for long-haul optical link. J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2022-0019
  • [13] Salgals, T., Supe, A., Bobrovs, V., Porins, J. & Spolitis, S. Comparison of dispersion compensation techniques for real-time up to 160 Gbit/s DWDM C-band transmission. Telecomun. Eng. 26, 85-93 (2020). https://doi.org/10.5755/j01.eie.26.2.25892
  • [14] Agrawal, G. P. Fibre Optic Raman Amplifiers. In Guided Wave Optical Components and Devices (ed. Pal, B. P.) 131-153 (2006). https://doi.org/10.1016/B978-012088481-0/50010-3
  • [15] Lamon, D. & Stuyvaert, J. Raman Amplification. Universidade do Porto. https://web.fe.up.pt/~ext07025/documents/Deben_Lamon_Raman_amplification.pdf (2008).
  • [16] Rostami, A., Rahbari, J. & Andalib, A. Investigation of power penalty in WDM systems for dispersion managed fibres. Optik 124, 2072-2075 (2013). https://doi.org/10.1016/j.ijleo.2012.06.065
  • [17] Houghton, A. Bit Error Rates. In Error Coding for Engineers 165-176 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1509-8_11
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02455103-dc61-4ecf-97b0-59e2fd34f572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.