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Abstract—In this paper an extension of thermal influence
coefficients method to frequency domain has been presented. The
method allowed the steady-state analysis of three-dimensional
heat flow in multilayered structures. The presented modelling is
based on Fourier and Hankel transforms, two-port network the-
ory and correction coefficients for close-area distances, allowing
emulation of finite heat sources by infinitesimal ones.

Index Terms—thermal modelling, thermal simulation, AC

I. INTRODUCTION

THE traditional approach to heat transfer is confined to

steady-state and time-domain. It may be deemed suffi-

cient for a variety of purposes, however it does not suffice

for all the phenomena. The exploration of frequency-domain

ceases to be negligible when structures become relatively

small, e.g. the microelectronic structures. In this case, the cut-

off frequency becomes considerably high, the high frequencies

penetrate the structure and the penetration no longer can be

perceived as depth-less. The periodic heat sources can e.g.

result from some unwanted thermal coupling within a circuit

or energy waves deliberately applied to the surface in order

to carry out the non-destructive testing (NDT) i.e. lock-in

thermography [8].

The nomenclature for AC thermal modelling is derived

from the terminology in the electric domain as it implies the

existence of the periodic sources. The numerical simulations

performed in AC are not entirely realistic, as the genuine

sinusoidal heat sources are of no existence. The method

assumes that the sinusoidal components are superimposed on

DC background.

The semi-analytic solution for a 3-D heat flow in microelec-

tronic multilayered structures has been derived on the basis of

thermal influence coefficients method extended to frequency

(AC) domain.

II. THERMAL INFLUENCE COEFFICIENTS METHOD

The thermal influence coefficients method of thermal anal-

ysis has been developed for steady-state approach [2]. The

method was intended for three-dimensional heat flow in mul-

tilayered structures. The heat sources can be of an arbitrary
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shape and are located at the upper surface of the structure.

At the bottom layer, the constant heat exchange is assumed

(e.g. large heat sink or forced convection). It is also assumed

that the only mechanism of heat transfer that takes place,

is conduction. The convection and radiation are negligible,

which is a reasonable assumption for most of the cases.

Hence, the lateral planes of a structure are adiabatic. Fur-

thermore, the layers are homogeneous and isotropic (can be

described by a constant thermal conductivity k [Wm−1K−1]
and (volumetric) heat capacity Cυ [Jm

−3K−1]). To introduce

the lateral boundary conditions method of images has been

employed. The thermal conductivity of the interface between

layers is expressed by gi[Wm−2K−1], i.e. interface thermal

conductance.

The proposed extension exploits the idea of employing fre-

quency domain to thermal analysis.

III. MULTILAYER STRUCTURE

A multilayer structure is a structure consisted of several

(n ≥ 1) layers of different materials (ki and Cυi), having

finite thickness (ti). The set of layers is supposed to have the

same lateral dimensions (Fig.1). However, at the beginning the

semi-infinite structure is considered. The lateral dimensions

are introduced later by using image method.

Fig. 1. Multilayer structure with heat sources at the upper surface

The distribution of heat in a given space over time can be

described by Fourier equation:

δT

δt
− α∇2T = 0 (1)

where α is thermal diffusivity [m2s−1] and α = k/Cυ .

The analysed problem is axially symmetric therefore can be

expressed with cylindrical coordinates (r, ϕ, z) leaving out the

azimuth. Hence, the temperature distribution is merely the

function of radial distance and height (T = f(r, z)).



To provide explicitly the frequency domain to the equation, the

phasor notation is introduced. The relation between a signal

x(t) and its corresponding phasor X is defined as:

x(t) = Re[Xexp(jωt)] (2)

The heat equation in phasor notation (AC heat equation) is

formed:

∇2T (r, z)− jω

α
T (r, z) = 0 (3)

In order to significantly simplify the solution and eliminate

the r coordinate, Hankel transform [3], [6] can be used. Thanks

to the transformation, the AC heat equation changes to a

differential equation depending only on z, with frequency ω
and Hankel variable p as parameters:

d2T̄i

dz2
−mi

2T̄i = 0 (4)

where:

mi =

√
p2 +

jωCv

k
(5)

and T̄ denotes the Hankel transform of T (z).
The problem formulated by the equation 4, represents a one-

dimensional heat flow. Using T̄iI , ¯TiO, φ̄iI and ¯φiO as the

transformed distributions of temperature and heat flux at each

layer’s "input" and "output", we can use the two-port network

theory to express the dependencies between them [4]:[
T̄iI

φ̄iI

]
= [Ai(mi)]

[
¯TiO
¯φiO

]
(6)

where:

[Ai(mi)] =[
cosh(miti)

sinh(miti)
miki

+ cosh(miti)
gi

mikisinh(miti)
miki

gi
sinh(miti) + cosh(miti)

]
(7)

The parameter describing thermal contact between layers is

the interface thermal conductance. In practice it may depend

severely on the quality of the physical interface. However,

in all of the simulations presented in the paper, the perfect

contacts have been assumed (g →∞).

The Ai(mi) matrix fully characterises thermal parameters of a

layer and the interface with the next one, as well as geometry

(thickness) of the material.

For the whole n-layer structure, the subsequent transforma-

tions of the equation 6 lead to:[
T̄1I

φ̄1I

]
= [A(m)]

[
¯TnO
¯φnO

]
(8)

where [A(m)] = [A1(m1)][A2(m2)]...[An(mn)]. Accord-
ing to the initial assumptions φ̄1I and ¯TnO are known (power

dissipation at the upper surface and reference temperature at

the bottom), and ¯φnO and T̄1I are given by:

T̄1I =
1

A22

¯TnO +
A12

A22
φ̄1I (9)

¯φnO =
1

A22
φ̄1I − A12

A22

¯TnO (10)

As an example let us consider an infinitesimal heat source

with the total power of P . The Hankel transform of power

distribution generated by the circular source with the radius r
is given by:

H(φ1) = H(
P

πa2
H(a− r)) =∫ ∞

0

P

πa2
H(a− r)J0(pr)rdr =

PJ1(ap)

πap

(11)

For a→ 0 the equation assumes the form:

φ̄1 =
P

2π
(12)

Assuming a single-layer substrate with a thickness of t, the
reference temperature at the bottom equal to zero and infinite

thermal conductivity of the contact, the expression 9 yields:

T̄1I =
tanh(mt)

mk

P

2π
(13)

Thus:

Tinf (r) = T1I(r) =
P

2πk

∫ ∞

0

tanh(mt)√
p2 + jωCυ

k

J0(pr)pdp

(14)

where Tinf denotes the temperature contribution from the

infinitesimal heat source.

IV. HIGHLY OSCILLATORY INTEGRAND

The chosen modelling method, including Hankel transfor-

mation, on one hand allows some very advantageous simpli-

fication of the problem, but on the other it has its drawbacks.

The transformed distributions are relatively easy to be obtained

(as the three dimensional heat flow has been reduced to one

dimension), however the computation of the inverse transform

is complicated on its own. The integrals involving Bessel

functions are of highly oscillatory nature. Provided that the

integral of the form:

I(p) =

∫ ∞

0

f(x)J0(ρx)dx (15)

has a f(x) that goes to zero slowly as x → ∞, the

integration is performed over many oscillations of J0(x).
In such case, the traditional numerical techniques become

inefficient.

A. Straightforward approach

None of the built-in Octave (high-level interpreted language

for numerical computations) integrating functions could handle

the problem of infinite oscillations. The easiest solution is to

iteratively carry out integration dividing the infinite interval

into subsequent steps.

The idea is to divide the integration into two steps. First,

to deal with the arbitrarily long (parametrised) beginning of



the integrand, therefore at first reducing the problem to a

finite integral. Then, the rest of the integrand is the oscillating

Bessel-function tail, that can be treated period by period, until

the subsequent integrals will have negligible (quantitatively

described) influence on the result. Zeros of the Bessel tail can

be easily found using cosine approximation (22). After the

first step, the first positive-derivative zero is found to make

sure second step takes into account only full periods (Fig.2).

Otherwise, the results from subsequent periods would cause

the integral to oscillate and highly reduce the accuracy.

Fig. 2. Numerical integration of inverse Hankel transform

The main problem of the described approach is to determine

at which point the remaining Bessel-function tail has negligi-

ble influence on the result. A parameter has been chosen, to

compare the current integral (over last period) to the previously

computed overall result. When the subsequent step makes the

result to change by less than the set accuracy, the integration

stops.

Depending on the set accuracy, the method can give results

with less then < 1% error, however for high accuracies the

computation time gets unacceptable and there is a need to

accelerate integration.

B. Convergence acceleration

To accelerate integration, the Euler’s transformation can be

used [3]. The method allows convergence acceleration when

integrating between the zeros of J0(p) (the only order of

Bessel function considered here is n = 0, however the method

works for higher orders as well). The considered integral can

be represented as a series (16) provided that the absolute value

of each Ii integral is taken.

I(r) =

∫ ∞

0

J0(pr)f(p)dp =

∞∑
k=1

(−1)k+1Ik (16)

Using aforementioned Euler’s transform we get:

I(r) =
1

2
I1 − 1

4
ΔI1 +

1

8
Δ2I1 − ... (17)

where Δ is the forward difference operator:

Δna0 =

n∑
k=0

(−1)k
(
n

k

)
an−k (18)

It appears that not only the integration can be vastly

accelerated (Table IV-B), but also the method of convergence

TABLE I
COMPARISON OF METHODS - NORMALISED TIME CONSUMPTION

normalised computation time
set accuracy straightforward accelerated

1e-2 0.003 0.002
1e-3 0.011 0.004
1e-4 0.050 0.006
1e-5 0.218 0.009
1e-6 1.000 0.013

acceleration tends to give much more accurate results (Fig.

3). The highlighted cells indicate that for a given accuracy the

integration error is less than 0.5%.

Fig. 3. Numerical integration - errors of the simple and the accelerated
method

However, it is important to notice that the method works

well when infinitesimal sources are considered. Otherwise, if

the size is finite, i.e. it is circle-shaped, it introduces another

Bessel function to the integrand (Eq.19 - 21) and the formula

Eq.(16) no longer describes it.
The circle shaped heat flux is given by:

φ =
P

πr2
H(a− r) (19)

where a is the radius of the circle and H(·) is the Heaviside
step function. Hence, the corresponding Hankel transformed

heat flux is expressed by:

φ̄ =
PJ1(ap)

πap
(20)

and the integral takes form:

T1I =
P

πak

∫ ∞

0

1

p
J0(pr)J1(ap)dp (21)

The integrand is a product of two Bessel functions with

different periods. The term period can be used as these

functions can be approximated by cosine [7]:

J�
0 (x) =

√
2

π

√
1

x
cos(

π

4
− x) (22)

for x ≥ 1. A product of two Bessel functions does not exhibit

a regular pattern and its integral can no longer be perceived as

an alternating series of integrals computed between function’s

zeros. Thus, the method of convergence acceleration by using

Euler’s transformation 16 is in this case of no use.



V. HEAT SOURCES AND DISTANCE CORRECTIONS

To effectively simulate a heat source of an arbitrary shape

and size, the discretization grid is used. The upper surface of

the structure can be thus divided into nx × ny squares of the

same size (A×A), where the size of a square can be treated

as a parameter. In this way, the physical heat source can be

represented as a set of square-shaped sources.

Fig. 4. Discretization grid allows representing heat sources as a set of squares

A problem arises when it comes to the computational com-

plexity of introducing square heat sources versus infinitesimal

ones. For a punctual source over a single layer of solid with

thickness t, temperature distribution is given by (14). For a

square source, it is necessary to use the superposition principle

and integrate (14) over the entire source area, which results in

longer computation times:

Tsquare(r) =

∫ A
2

−A
2

∫ A
2

−A
2

Tinf (r)dr

r =
√
(x− x0)2 + (y − y0)2

(23)

However, as it can be easily observed, for further distances

from the source, its geometry does no longer have influence

on the temperature distribution and a finite size source can be

approximated by the infinite one (Fig.5).

Fig. 5. Comparison between T (r) of an infinite and finite size circular heat
sources with radius r = 1mm

A. Distance corrections

The emulation of the square shaped source by an infinitely

small one is possible only for further distances (for the chosen

accuracy - above 3A). For closer areas, it is necessary either

to take into account the geometry of the square source by

integration over its entire area, or to find some means allowing

us to use the results obtained for the punctual source.

Fig. 6. Temperature computation at point (0,0)

For the steady-state approach, it is possible to determine

the equivalent distances (ξ) at which the temperature resulting

from an infinitesimal heat source is equal to the temperature

resulting from a square shaped source at the specific distance

and orientation [1]. For example, in figure 6, we want to com-

pute the temperature in point (0,0) resulting from contributions

of square heat sources with centres (1,2), (1,1) and (4,0):

T ((0, 0)) = Tinf (ξ(1,1)A) + Tinf (ξ(1,2)A) + Tinf (4A) (24)

For sources located at (1,1) and (1,2) an application of

equivalent distance is essential to obtain an accuracy above

0, 5%. The source (4,0) is far enough to be approximated by

infinitesimal source.

For AC approach, the problem is slightly more complicated.

It turns out, it is impossible to determine one value for each

discrete distance. It appears that ξ depends on the product

of the frequency and the square of grid size divided by the

thermal diffusivity of the upper layer, denoted as ζ:

ζ =
ωA2

α
(25)

The dependency between ζ and equivalent distance can be

computed numerically for an infinite thickness of the structure.

For each grid point within the considered area, the temperature

is calculated for a square shaped source:

T (r) =
P

2πkA
×∫ 1

2

− 1
2

∫ 1
2

− 1
2

1√
x2 + y2

exp

(
−
√

jωA2

α

√
x2 + y2

)
dxdy

(26)

The result is compared with the results achieved for a

punctual heat source. The dependency for a set of ζ values

is tabulated in a form of a lookup table and later equivalent

distance for any requested distance can be interpolated.

It is worth noting that carried out computations show there

is a need to consider amplitude and phase separately. In Fig. 7,

there is an example comparison between those two. "Cell(0,0)"

means that the grid point under consideration is the heat source

itself.



Fig. 7. ξ vs ζ for an example grid cell - amplitude and phase

Having systematized all the close-area equivalent distances

for the semi-infinite substrate (later referred to as reference

equivalent distance) does not guarantee that the same distance

can be used for finite thickness. The accuracy of this approach

has been verified numerically for various values of the t/A
ratio. The simulations have shown, that for thickness smaller

than the quintuple of grid size A, the error caused by applying

those reference equivalent distances rises significantly. For

thicker substrates the approximation is very accurate (Fig.8).

Therefore for most of the cases, the thickness does not exclude

the lookup tables to be of use. For larger sources, they have

to be divided using smaller grid.

Fig. 8. Relative temperature magnitude error resulting from using reference
equivalent distance for finite thickness substrates

VI. IMAGE METHOD

To introduce lateral dimensions to the structure, method of

images is applied [9]. It superimposes the plane sources and

sinks (denoted by plus and minus signs respectively) onto the

existing infinite body. In case of the one dimensional, insulated

BCs case, the location of the sources is as follows:

2nL+ x− x′ n = ...,−2,−1, 0, 1, 2, ...
2nL+ x+ x′ n = ...,−2,−1, 0, 1, 2, ... (27)

VII. VERIFICATION

The method has been verified and it gives accurate results.

The achieved simulation results were compared with other

methods that give solutions for three dimensional heat con-

duction (Fig.10,12). The error in the worst case is below 1%.

Fig. 9. Double layered structure with rectangular heat source: top view and
three dimensional view (all dimensions in [mm])

Fig. 10. Comparison between simulation results and theoretical ones for the
structure presented in Fig.9

Fig. 11. Single layered silicon structure with two rectangular heat sources:
top view and three dimensional view (all dimensions in [mm]). The thermal
impedance plot is calculated for the centre of the left-hand source.

Fig. 12. Comparison between simulation results and theoretical ones for the
structure presented in Fig.11



VIII. CONCLUSION

The extension of the thermal influence coefficients method

to frequency domain has been presented. The idea behind

introducing the frequency domain to thermal analysis, is that

for distances encountered in the microelectronic structures, the

penetration depth for higher frequencies is no longer negligi-

ble. The three dimensional heat flow has been transformed

to one dimensional problem, and thanks to that simplification

the two port network theory could be employed. The accuracy

of the computations depends significantly on the ability of

effective inversion of Hankel transform. The highly oscilla-

tory integrand caused by the Bessel function can be neatly

converged using Euler’s transformation. The solution not only

allows the significant speed up of the computations, but also

results in higher accuracy achieved within much shorter time.

The heat sources at the upper surface of the structure has

been modelled as a set of square shaped sources. Those

were emulated by infinitesimal ones. For the close area, the

equivalent distances for both amplitude and phase have been

determined and expressed in the form of lookup tables giving

the ability for later interpolation. The equivalent distance was

proved to be dependent on frequency, grid size and thermal

diffusivity. It was shown that for the use of lookup table

thickness of a structure must be taken into account only when

it is smaller than a grid size.
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