PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In medical image processing, brain tumor detection and segmentation is a challenging and time-consuming task. Magnetic Resonance Image (MRI) scan analysis is a powerful tool in the recent technology that makes effective detection of the abnormal tissues from the brain. In the brain image, the size of a tumor can be varied for different patients along with the minute details of the tumor. It is a difficult task to diagnose and classify the tumor from numerous images for the radiologists. This paper developed a brain tumor classification using a hybrid deep autoencoder with a Bayesian fuzzy clustering-based segmentation approach. Initially, the pre-processing stage is performed using the non-local mean filter for denoising purposes. Then the BFC (Bayesian fuzzy clustering) approach is utilized for the segmentation of brain tumors. After segmentation, robust features such as, information-theoretic measures, scattering transform (ST) and wavelet packet Tsallis entropy (WPTE) methods are used for the feature extraction process. Finally, a hybrid scheme of the DAE (deep autoencoder) based JOA (Jaya optimization algorithm) with a softmax regression technique is utilized to classify the tumor part for the brain tumor classification process. The proposed scheme is implemented in a MATLAB environment. The simulation results are conducted by the BRATS 2015 database which proved that the proposed approach obtained the high classification accuracy (98.5 %) when compared to other state-of-art methods.
Twórcy
  • Computer Science and Engineering, Amrita College of Engineering and Technology, Amritagiri, Erachakulam, Tamil Nadu, India
  • Computer Science and Engineering, Amrita College of Engineering and Technology, Amritagiri, Erachakulam, Tamil Nadu, India
Bibliografia
  • [1] Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Supervised learning based multimodal MRI brain tumor segmentation using texture features from super voxels. Comput Methods Programs Biomed 2018;157:69–84.
  • [2] Kaya IE, Pehlivanli AÇ, Sekizkardes EG, Ibrikci T. PCA based clustering for brain tumor segmentation of T1w MRI images. Comput Methods Programs Biomed 2017;140:19–28.
  • [3] Hagargi AP, Shubhangi DC. Brain tumour detection and ART classification technique in MR brain images using RPCA QT decomposition. Brain 2018;5(04).
  • [4] Rao CR, MNVSS Kumar, Rao GSB. A novel segmentation algorithm for feature extraction of brain MRI tumour. Information and decision sciences. Singapore: Springer; 2018. p. 455–63.
  • [5] Latha M, Surya R. Brain tumour detection using neural network classifier and k-means clustering algorithm for classification and segmentation. Eur J Appl Sci 2017;9(2): 66–71.
  • [6] Manasa N, Mounica G, Tejaswi BD. Brain tumor detection based on canny edge detection algorithm and its area calculation. Brain 2016;5:10–3.
  • [7] Lavanyadevi R, Machakowsalya M, Nivethitha J, Kumar AN. Brain tumor classification and segmentation in MRI images using PNN. Electrical, Instrumentation, and Communication Engineering (ICEICE), 2017 IEEE International Conference on IEEE. 2017. pp. 1–6.
  • [8] Desai D, Chapatwala N. Brain extraction methods for magnetic resonance images (MRI). Brain 2016;4(5).
  • [9] Prabu AV, Bharti A, Guru N, Tripathy S. Brain tumour detection in MRI images using matlab. Int J Sci Res Sci Eng Technol 2016;2(2):1230–3.
  • [10] George DN, Jehlol HB, Oleiwi ASA. Brain tumour detection using shape features and machine learning algorithms. Int J Adv Res Comput Sci Softw Eng 2015;5(10).
  • [11] Boughattas N, Berar M, Hamrouni K, Ruan S. Feature selection and classification using multiple kernel learning for brain tumor segmentation. Advanced Technologies for Signal and Image Processing (ATSIP), 2018 4th International Conference on IEEE. 2018. pp. 1–5.
  • [12] Yassine ST, Sara S, Bouchaib C, Abdelilah R. A new fast brain tumor extraction method based on Nl-means and expectation maximization. Optimization and Applications (ICOA), 2018 4th International Conference on IEEE. 2018. pp. 1–5.
  • [13] Jothi G. Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification. Appl Soft Comput 2016;46:639–51.
  • [14] Banerjee S, Mitra S, Shankar BU. Automated 3D segmentation of brain tumors using visual saliency. Inf Sci 2018;424:337–53.
  • [15] Mukaram A, Murthy C, Kurian MZ. An automatic brain tumour detection. Segmentation and classification using MRI image; 2017.
  • [16] Praveen GB, Agrawal A. Hybrid approach for brain tumor detection and classification in magnetic resonance images. Communication, Control and Intelligent Systems (CCIS), IEEE. 2015. pp. 162–6.
  • [17] Rajesh T, Malar RSM, Geetha MR. Brain tumor detection using optimization classification based on rough set theory. Cluster Comput 2018;1–7.
  • [18] Arora A, Roy P, Shwetha MD, Venktesan S, Babu R. K-NN based classification of brain MRI images using DWT and PCA to detect different types of brain tumour. Int J Med Res Health Sci 2017;6(9):15–20.
  • [19] Singh A. Detection of a brain tumor in MRI images, using a combination of fuzzy c-means and SVM. Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on IEEE. 2015. pp. 98–102.
  • [20] Chinnu A. MRI brain tumor classification using SVM and histogram-based image segmentation. Int J Comput Sci Inform Technol 2015;6(2):1505–8.
  • [21] Mathew AR, Anto PB, Thara NK. Brain tumor segmentation and classification using DWT, Gabour wavelet and GLCM. Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017 International Conference on IEEE. 2017. pp. 1744–50.
  • [22] Iqbal S, Ghani MU, Saba T, Rehman A. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Tech 2018;81(4): 419–27.
  • [23] Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 2018;43:98–111.
  • [24] Padlia M, Sharma J. Fractional sobel filter based brain tumour detection and segmentation using statistical features and SVM. Nanoelectronics, circuits and communication systems. Singapore: Springer; 2019. p. 161–75.
  • [25] Shen G, Ding Y, Lan T, Chen H, Qin Z. Brain tumour segmentation using concurrent fully convolutional networks and conditional random fields. Proceedings of the 3rd International Conference on Multimedia and Image Processing, ACM; 2018. p. 24–30.
  • [26] Glenn TC, Zare A, Gader PD. Bayesian fuzzy clustering. IEEE Trans Fuzzy Syst 2015;23(5):1545–61.
  • [27] Chang K-Y, Chen C-S. A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans Image Process 2015;24(3):785–98.
  • [28] Zhang Y-D, Zhao G, Sun J, Wu X, Wang Z-H, Liu H-M, et al. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimed Tools Appl 2017;1–20.
  • [29] Jia W, Yang M, Wang S-H. Three-category classification of magnetic resonance hearing loss images based on deep autoencoder. J Med Syst 2017;41(10):165.
  • [30] Zhang Y-D, Zhang Y, Hou X-X, Chen H, Wang S-H. Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl 2017;1–18.
  • [31] Chavan NV, Jadhav BD, Patil PM. Detection and classification of brain tumors. Int J Comput Appl 2015;112(8).
  • [32] Suhag S, Saini LM. Automatic brain tumor detection and classification using an SVM classifier. Proceedings of ISER 2nd International Conference; 2015. p. 55–9.
  • [33] Deepa SN, Devi BA. Artificial neural networks design for the classification of brain tumors. Computer Communication and Informatics (ICCCI), 2012 International Conference on IEEE. 2012. pp. 1–6.
  • [34] Mohsen H, El-Dahshan ES, El-Horbaty ES, Salem AB. Classification using deep learning neural networks for brain tumors. Future Comput Inform J 2017.
  • [35] Rajan PG, Sundar C. Brain tumor detection and segmentation by intensity adjustment. J Med Syst 2019;43 (8):282.
  • [36] Zhang C, Shen X, Cheng H, Qian Q. Brain tumor segmentation based on hybrid clustering and morphological operations. Int J Biomed Imaging 2019;2019:1–11.
  • [37] Hasan SMK, Linte CA. A modified U-Net convolutional network featuring a nearest-neighbor re-sampling-based elastic-transformation for brain tissue characterization and segmentation. 2018 IEEE Western New York Image and Signal Processing Workshop (WNYISPW). 2018. pp. 1–5.
  • [38] Arasi PRE, Suganthi M. A clinical support system for brain tumor classification using Soft computing techniques. J Med Syst 2019;43(5):144.
  • [39] Malathi M, Sinthia P. MRI brain tumour segmentation using hybrid clustering and classification by back propagation algorithm. Asian Pacific J Cancer Prev APJCP 2018;19 (11):3257.
  • [40] Özyurt F, Sert E, Avci D. An expert system for brain tumor detection: fuzzy C-means with super-resolution and convolutional neural network with extreme learning machine. Med Hypotheses 2020;134109433.
  • [41] Gonella G, Binaghi E, Nocera P, Mordacchini C. Investigating the behaviour of machine learning techniques to segment brain metastases in radiation therapy planning. Appl Sci 2019;9(16):3335.
  • [42] Wang G, Li W, Vercauteren T, Ourselin S. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci 2019;13:56.
  • [43] Sriramakrishnan P, Kalaiselvi T, Rajeswaran R. Modified local ternary patterns technique for brain tumor segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybern Biomed Eng 2019;39(2):470–87.
  • [44] Yang T, Song J, Li L. A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI. Biocybern Biomed Eng 2019;39(3):613–23.
  • [45] Tong J, Zhao Y, Zhang P, Chen L, Jiang L. MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomed Signal Process Control 2019;47:387–92.
  • [46] Anaraki AK, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 2019;39(1):63–74.
  • [47] Raju AR, Suresh P, Rao RR. Bayesian HCS-based multi- SVNN: a classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering. Biocybern Biomed Eng 2018;38(3):646–60.
  • [48] Shree NV, Kumar TNR. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform 2018;5(1):23–30.
  • [49] Devkota B, Alsadoon A, Prasad PWC, Singh AK, Elchouemi A. Image segmentation for early-stage brain tumor detection using mathematical morphological reconstruction. Procedia Comput Sci 2018;125:115–23.
  • [50] Prabhu LAJ, Jayachandran A. Mixture model segmentation system for parasagittal meningioma brain tumor classification based on hybrid feature vector. J Med Syst 2018;42(12):251.
  • [51] Dong H, Yang G, Liu F, Mo Y, Guo Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. The annual conference on medical image understanding and analysis. Cham: Springer; 2017. p. 506–17.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-023f098a-9e7b-4f06-9e19-5e7950553156
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.