Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article concerns with the existence of solutions of thea quadratic integral equation of Fredholm type with a modified argument, [wzór], where p, k are functions and F is an operator satisfying the given conditions. Using the properties of the Hölder spaces and the classical Schauder fixed point theorem, we obtain the existence of solutions of the equation under certain assumptions. Also, we present two concrete examples in which our result can be applied.
Czasopismo
Rocznik
Tom
Strony
47--66
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Department of Mathematical Education, Inönü University, 44280-Malatya, TURKEY
autor
- Eğitim Fakültesi, A-Blok, Inönü University, 44280-Malatya, TURKEY
Bibliografia
- [1] R.P. Agarwal, J. Banaś, K. Banaś, D. O’Regan, Solvability of a quadratic Hammerstein integral equation in the class of functions having limits at infinity, J. Int.Eq. Appl. 23 (2011) 157–181.
- [2] R.P. Agarwal, D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral equations, Kluwer Academic Publishers, Dordrecht, 2001.
- [3] R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
- [4] C. Bacotiu, Volterra-Fredholm nonlinear systems with modified argument via weakly Picard operators theory, Carpath. J. Math. 24 (2) (2008) 1–19.
- [5] J. Banaś, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005) 943–952.
- [6] J. Banaś, M. Lecko, W.G. El-Sayed, Existence theorems of some quadratic integral equation, J. Math. Anal. Appl. 222 (1998) 276–285.
- [7] J. Banaś, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Func. Spac. Appl. (2013), Article ID820437, 13 PP.
- [8] M. Benchohra, M.A. Darwish, On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes 10 (1) (2009) 3–10.
- [9] J. Caballero, M.A. Darwish, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type in H ̈older spaces, Electron. J. Differential Equations 31 (2014) 1–10.
- [10] J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math. Sin. (English Series) 23 (2003) 1719–1728.
- [11] J. Caballero, J. Rocha, K. Sadarangani, On monotonic solutions of an integral equation of Volterra type, J. Comput. Appl. Math. 174 (2005) 119–133.
- [12] K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison Wesley, Reading, M.A 1967.
- [13] S. Chandrasekhar, Radiative transfer, Dover Publications, New York, 1960.
- [14] M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005) 112–119.
- [15] M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebras, Commun. Appl. Anal. 11 (2007) 441–450.
- [16] M.A. Darwish, S.K. Ntouyas, On a quadratic fractional Hammerstein-Volterra integral equations with linear modification of the argument, Nonlinear Anal. 74(2011) 3510–3517.
- [17] M. Dobritoiu; Analysis of a nonlinear integral equation with modified argument from physics, Int. J. Math. Models and Meth. Appl. Sci. 3 (2) (2008) 403–412.
- [18] S. Hu, M. Khavani, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261–266.
- [19] T. Kato, J.B. Mcleod; The functional-differential equation y’(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971) 891–937.
- [20] C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Int. Eq. 4 (1982) 221–237.
- [21] M. Lauran, Existence results for some differential equations with deviating argument, Filomat 25 (2) (2011) 21–31.
- [22] V. Mureşan, A functional-integral equation with linear modification of the argument, via weakly Picard operators, Fixed Point Theory 9 (1) (2008) 189-197.
- [23] V. Mureşan, A Fredholm-Volterra integro-differential equation with linear modification of the argument, J. Appl. Math. 3 (2) (2010) 147–158.
- [24] J. M. A Toledano, T. D Benavides, G. L Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag, 1997.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02375edc-f735-4f22-a19c-927a263e260c