Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3,6-Bishydrazino-1,2,4,5-tetrazine was synthesized as described by hydrazinolysis of 3,6-bis-(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine. Doubly protonated 1:1 and 1:2 salts of the highly energetic anions were synthesized. These are bishydrazinium-tetrazine dichloride dihydrate (1:2) (BHT-2HCl•2H2O) (2), bishydrazinium-tetrazine (5,5´-azotetrazolate) dihydrate (1:1) (BHT-ATz•2H2O) (3), bishydrazinium-tetrazine bis (3,5-dinitrotriazolate) dihydrate (1:2) (BHT(DNT)2•2H2O) (4), bishydrazinium-tetrazine bis (5-nitrotetrazolate) (1:2) (BHT(NT)2) (5), bishydrazinium-tetrazine (5,5´-bistetrazolate) dihydrate (1:1) (BHTBT•2H2O) (6), bishydrazinium-tetrazine bistetrazolylamine (1:1) (BHT-BTA) (7), bishydrazinium-tetrazine bis (3-amino-5-nitrotriazolate) (1:2) (BHT-(ANTA)2) (8) and bishydrazinium-tetrazine 4,4´,5,5´-tetranitro-2,2´-bisimidazolate (1:1) (9). Compounds 2-6 could be characterized by low temperature X-ray diffraction. All of the compounds were suffciently analyzed by 1H and {1H}13C and 14N NMR spectroscopy, elemental analysis (CHN), mass spectroscopy (FAB)) and vibrational spectroscopy (IR and Raman). The detonation parameters of the most promising candidates 5 and 9 in terms of energetic applications were calculated using the EXPLO5 V5.05 computer code. The energies of formation were calculated using CBS-4M electronic enthalpies and the atomization method. Furthermore, since all of the compounds are energetic materials, sensitivity tests towards impact (IS), friction (FS) and electrostatical discharge (ESD) were carried out. In addition their thermal stabilities were determined using a differential scanning calorimeter with a heating rate of 5 °C min-1.
Rocznik
Tom
Strony
151--170
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
autor
- Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
autor
- Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
autor
- Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
Bibliografia
- [1] Steevens J.A., Duke B.M., Lotufo G.R., Bridges T.S., Toxicity of the Explosives 2,4,6-trinitrotoluene, Hexahydro-1,3,5-trinitro-1,3,5-triazine, and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Sediments to Chironomus tentans and Hyalella azteca: Low-dose Hormesis and High-dose Mortality, Environ. Toxicol. Chem., 2002, 21(7), 1475-1482.
- [2] Klapötke T.M., Chemie der hochenergetischen Materialien, 1. Aufage, Walter de Gruyter, Berlin, 2009, pp. 6-28.
- [3] Koch E.-C., Weiser V., Roth E., 2,4,6-Trinitrotoluene: A Surprisingly Insensitive Energetic Fuel and Binder in Melt-Cast Decoy Flare Compositions, Angew. Chem. Int. Ed., 2012, 51, 10038-10040.
- [4] Zhang Y., Parrish D.A., Shreeve J.M., 4-Nitramino-3,5-dinitropyrazole-Based Energetic Salts, Chem. Eur. J., 2012, 18, 987-994.
- [5] Oxley J.C., Smith J.L., Chen H., Thermal Decomposition of High-nitrogen Energetic Compounds – Dihydrazido-S-tetrazine Salts, Thermochim. Acta, 2002, 384, 91-99.
- [6] Calculated using CBS-4M electronic enthalpies and the atomization method. The sublimation enthalpy was computed using Trouton’s rule.
- [7] Chavez D.E., Hiskey M.A., 1,2,4,5 Tetrazine Based Energetic Materials, J. Energ. Mater., 1999, 17, 357-377.
- [8] Hiskey M.A., Chavez D.E., Naud L., Low-Smoke Pyrotechnic Compositions, US Patent 6214139, The Regents of the University of California, USA, 2001.
- [9] Coburn M.D., Buntain G.A., Harris B.W., Hiskey M.A., Lee K.-Y., Ott D.G., Synthesis of the bi-Heterocyclic Parent Ring System 1,2,4-Triazolo[4,3-b][1,2,4,5] Tetrazine and Some 3,6 Disubstituted Derivatives, J. Heterocycl. Chem., 1998, 35, 1329-1332.
- [10] Coburn M.D., Buntain G.A., Harris B.W., Hiskey M.A., Lee K.-Y., Ott D.G., An Improved Synthesis of 3,6-Diamino-1,2,4,5-tetrazine from Triaminoguanidine and 2,4-Pentanedione, J. Heterocycl. Chem., 1991, 28, 2049-2050.
- [11] Huynh M.H.V., Hiskey M.A., Archuleta J.G., Roemer E.L., Gilardi R., 3,6-Di(azido)-1,2,4,5-Tetrazine: A Precursor for the Preparation of Carbon Nanospheres and Nitrogen-Rich Carbon Nitrides, Angew. Chem. Int. Ed., 2004, 43, 5658-5661.
- [12] Gong Y.H., Miomandre F., Méallet-Renault R., Badré S., Galmiche L., Tang J., Audebert P., Clavier G., Synthesis and Physical Chemistry of s-Tetrazines: Which Ones are Fluorescent and Why ?, Eur. J. Org. Chem., 2009, 35, 6121-6128.
- [13] Hammerl A., Holl G., Klapötke T.M., Mayer P., Nöth H., Piotrowski H., Warchold M., Salts of 5,5’-Azotetrazolate, Eur. J. Inorg. Chem., 2002, 4, 834-845.
- [14] Chernyshev M., Zemlyakov N.D., Il’in V.B., Taranushich V.A., Synthesis of 3,5-Dinitro-1,2,4-triazole, Russ. J. Appl. Chem., 2000, 73, 839-841.
- [15] Klapötke T.M., Sabaté C.M., Alkaline Earth Metal Salts of 5-Nitro-2H-tetrazole: Prospective Candidates for Environmentally Friendly Energetic Applications, Eur. J. Inorg. Chem., 2009, 6, 769-776.
- [16] Chavez D.E., Hiskey M.A., Naud D.L., High-Nitrogen Fuels for Low-Smoke Pyrotechnics, J. Pyrotech., 1999, 10, 17-37.
- [17] Klapötke T.M., Mayer P., Stierstorfer J., Weigand J.J., Bistetrazolylamines – Synthesis and Characterization, J. Mater. Chem., 2008, 18, 5248-5258.
- [18] Kofman T.P., 5-Amino-3-nitro-1,2,4-triazole and Its Derivatives, Russ. J. Org. Chem., 2002, 38, 1231-1243.
- [19] CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171 .NET).
- [20] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171 .NET).
- [21] Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., sir-92, A Program for Crystal Structure Solution, J. Appl. Cryst., 1993, 26, 343.
- [22] Sheldrick G.M., shelxl-97. Program for the Refnement of Crystal Structures, University of Göttingen, Germany, 1994.
- [23] Spek A.L., PlAton, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1999.
- [24] SCALE3 ABSPACK - An Oxford Diffraction Program (1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd.
- [25] Crystallographic data for the structure(s) have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code_(1223)336-033; e-mail for inquiry: fleserv@ccdc.cam.ac.uk; e-mail for deposition: deposit-@ccdc.cam.ac.uk).
- [26] Joo Y.-H., Shreeve J.M., Energetic Ethylene- and Propylene-Bridged Bis(nitroiminotetrazolate) Salts, Chem. Europ. J., 2009, 15, 3198-3203.
- [27] Klapötke T.M., Mayer P., Sabaté C.M., Welch J.M., Wiegand N., Simple, Nitrogen-Rich, Energetic Salts of 5-Nitrotetrazole, Inorg. Chem., 2008, 47, 6014-6027.
- [28] Gaussian 09, Revision A.2, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Gaussian, Inc., Wallingford CT, 2009.
- [29] (a) Ochterski J.W., Petersson G.A., Montgomery Jr. J.A., A Complete Basis Set Model Chemistry. V. Extensions to Six or more Heavy Atoms, J. Chem. Phys., 1996, 104, 2598; (b) Montgomery Jr. J.A., Frisch M.J., Ochterski J.W., Petersson G.A., A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method, J. Chem. Phys., 2000, 112, 6532; (c) Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A., Assessment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation, J. Chem. Phys., 1997, 106(3), 1063; (d) Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Chemical Methods, J. Phys. Chem. A, 2006, 110(3), 1005-1013; (d) Rice B.M., Pai S.V., Hare J.,Predicting Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, Comb. Flame, 1999, 118(3), 445-458.
- [30] (a) Jenkins H.D.B., Roobottom H.K., Passmore J., Glasser L., Relationships among Ionic Lattice Energies, Molecular (Formula Unit) Volumes, and Thermochemical Radii, Inorg. Chem., 1999, 38, 3609-3620; (b) Jenkins H.D.B., Tudela D., Glasser L., Inorg. Chem., 2002, 41(9), 2364-2367.
- [31] Westwell M.S., Searle M.S., Wales D.J., Williams D.H., J. Am. Chem. Soc., 1995, 117, 5013-5015; (b) Trouton F., Philos. Mag., 1884, 18, 54-57.
- [32] Meyer R., Köhler J., Homburg A., Explosives, Fifth Edition, Wiley VCH Verlag GmbH & Co.KG, Weinheim, 2002, p. 254.
- [33] Xu C. et al., The β-δ-Phase Transition and Thermal Expansion of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-tetrazocine, Propellants Explos. Pyrotech., 2010, 35, 333-338.
- [34] NATO Standardization Agreement (STANAG) on Explosives, Impact Sensitivity Tests, No. 4489, Ed. 1, Brussels, Sept. 17, 1999.
- [35] WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der Explosionsgefährlich-keit, hier der Schlagempfndlichkeit mit dem Fallhammer, Erding, November 8, 2002.
- [36] http://www.bam.de (retrieved 27.02.2013).
- [37] http://www.reichel-partner.de (retrieved 27.02.2013).
- [38] NATO Standardization Agreement (STANAG) on Explosives, Friction Sensitivity Tests, No. 4487, Ed. 1, Brussels, August 22, 2002.
- [39] WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der Explosionsgefährlich-keit oder der Reibeempfndlichkeit mit dem Reibeapparat, Erding, November 8, 2002.
- [40] Zeman S., Pelikan V., Majzlik J., Koci J., Electric Spark Sensitivity of Nitramines, Part II. A Problem of “Hot Spots”, Cent. Eur. J. Energ. Mater., 2006, 3(3), 45-51.
- [41] Skinner D., Olson D., Block-Bolten A., Electrostatic Discharge Ignition of Energetic Materials, Propellants Explos. Pyrotech., 1998, 23, 34 -42.
- [42] http://www.ozm.cz/en/sensitivity-tests/esd-2008a-small-scale-electrostatic-spark-sensitivity-test/ (retrieved 27.02.2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0233a38e-b608-468c-b102-449e85e93322