Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cavity-based metamaterials are usually designed for sound absorbing or sound scattering properties. They are built of combinations of ducts and slits, which in the case of acoustic absorbers are designed to maximize the sound absorption at resonance frequencies through the appearance of the viscothermal losses. The unit cells are designed under the assumption of perfectly rigid walls, shared by all the analytical models. Sound absorbing properties of the structures result from viscothermal losses in small ducts. The paper discusses the influence of adding sound absorption to the walls in the numerical model on the results of the observed sound absorption coefficient. It is demonstrated that the resulting sound absorption of the structure varies with changing sound absorption coefficient of the walls of the structure. The same observations are made for 3D-printed measurement samples, showing the importance of including the sound absorption of the walls in the modelling process.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023212
Opis fizyczny
Bibliogr. 22 poz., il. kolor., fot., wykr.
Twórcy
autor
- AGH University of Krakow
autor
- AGH University of Krakow
autor
- AGH University of Krakow
autor
- AGH University of Krakow
autor
- AGH University of Krakow
Bibliografia
- 1. Y. Ding, Z. Liu, C. Qiu, J. Shi. Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 99 (3)9, 2007, 93904,
- 2. J.-P. Groby, W. Huang, A. Lardeau, Y. Aurégan. The use of slow waves to design simple sound absorbing materials. J Appl Phys 117 (3)12, 2015, 124903,
- 3. M.M. Sigalas, E.N. Economou. Elastic and acoustic wave band structure. J Sound Vib 158 (3)2, 1992, 377-82,
- 4. G. Ma, M. Yang, S. Xiao, Z. Yang, P. Sheng. Acoustic metasurface with hybrid resonances. Nat Mater 13 (3)9, 2014, 873-8,
- 5. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani. Acoustic band structure of periodic elastic composites. Phys Rev Lett 71 (3)13, 1993, 2022,
- 6. N. Jiménez, V. Romero-García, V. Pagneux, J.P. Groby. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci Rep 7 (3)1, 2017, 1-13,
- 7. S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, Y. Li. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Appl Phys Lett 113 (3)23, 2018, 233501,
- 8. Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen, et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci Rep 7 (3)February, 2017, 1-11,
- 9. N. Jiménez, J.P. Groby, V. Romero-García. Acoustic waves in periodic structures, metamaterials, and porous media. Ch. the Transfer Matrix Method in Acoustics, Springer International Publishing, Cham 2021, 103-64,
- 10. N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, J.-P. Groby. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl Phys Lett 109 (3)12, 2016, 121902,
- 11. V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, V. Pagneux. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci Rep 6 (3)1, 2016, 1-8,
- 12. Z. Liang, J. Li. Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 108 (3)11, 2012, 114301,
- 13. X. Ni, Y. Wu, Z.-G. Chen, L.-Y. Zheng, Y.-L. Xu, P. Nayar, et al. Acoustic rainbow trapping by coiling up space. Sci Rep 4 (3)1, 2014, 7038,
- 14. T. Cambonie, F. Mbailassem, E. Gourdon. Bending a quarter wavelength resonator: Curvature effects on sound absorption properties. Applied Acoustics 1312018, 87-102,
- 15. A. Ciochon, J. Kennedy, M. Culleton. Evaluation of surface roughness effects on additively manufactured acoustic materials.
- 16. T.G. Zieliński, K.C. Opiela, P. Pawłowski, N. Dauchez, T. Boutin, J. Kennedy, et al. Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study. Addit Manuf 362020, 101564,
- 17. T.G. Zieliński, N. Dauchez, T. Boutin, M. Leturia, A. Wilkinson, F. Chevillotte, et al. Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials. Applied Acoustics 1972022, 108941,
- 18. A. Dell, A. Krynkin, K. V Horoshenkov. The use of the transfer matrix method to predict the effective fluid properties of acoustical systems. Applied Acoustics 1822021, 108259,
- 19. M.R. Stinson. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. J Acoust Soc Am 89 (3)2, 1991, 550-8,
- 20. A.I. Komkin, A.I. Bykov. Inertial attached neck length of Helmholtz resonators. Acoust Phys 622016, 269-79,
- 21. EN ISO 10534-2. Determination of sound absorption coefficient and impedance in impedance tubes, Part 2: Transfer-function method. 2003.
- 22. V. Romero-García, G. Theocharis, O. Richoux, V. Pagneux. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J Acoust Soc Am 139 (3)6, 2016, 3395-403.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-023308af-5e0f-43a3-bf12-7a74ad307299