PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal Lattice Damage and Recovery of Rare-Earth implanted Wide Bandgap Oxides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rare earth (RE) elements are important for the optical tuning of wide bandgap oxides (WBO) such as β-Ga2O3 or ZnO, because β-Ga2O3:RE or ZnO:RE show narrow emission lines in the visible, ultra-violet and infra-red region. Ion implantation is an attractive method to introduce dopant into the crystal lattice with an extraordinary control of the dopant ion composition and location, but it creates the lattice damage, which may render the dopant optically inactive. In this research work, we investigate the post-implantation crystal lattice damage of two matrices of wide-bandgap oxides, β-Ga2O3 and ZnO, implanted with rare-earth (RE) to a fluence of 5 x 10^14, 1 x 10^15 and 3 x 10^15 atoms/cm^2, and post-growth annealed in Ar and O2 atmosphere, respectively. The effect of implantation and annealing on both crystal lattices was investigated by channeling Rutherford backscattering spectrometry (RBS/C) technique. The level of crystal lattice damage caused by implantation with the same RE fluences in the case of β-Ga2O3 seems to be higher than in the case of ZnO. Low temperature photoluminescence was used to investigate the optical activation of RE in both matrices after performed annealing.
Twórcy
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • National Centre for Nuclear Research, ul. Soltana 7, 05–400 Otwock, Poland
  • National Centre for Nuclear Research, ul. Soltana 7, 05–400 Otwock, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
autor
  • Institute of Physics, Maria Curie-Sklodowska University, pl. Sklodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
Bibliografia
  • 1. Guziewicz E., Ratajczak R., Stachowicz M., Snigurenko D., Krajewski T.A., Mieszczynski C., Mazur K., Witkowski B.S., Dluzewski P., Morawiec K., Turos A. Atomic layer deposited ZnO films implanted with Yb: The influence of Yb location on optical and electrical properties. title. Thin Solid Films. 2017; 643: 7–15.
  • 2. Kuramata A., Koshi K., Watanabe S., Yamaoka Y., Masui T., Yamakoshi S. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Japanese Journal of Applied Physics. 2016; 55: 1–6.
  • 3. Stepanov S.I., Nikolaev V.I., Bougrov V.E., Romanov A.E. Gallium oxide: properties and applications- a review. Reviews on Advanced Materials Science. 2016; 44: 63–86.
  • 4. Mastro M.A., Kuramata A., Calkins J., Kim J., Ren F., Pearton S.J. Opportunities and Future Directions for Ga2O3. ECS Journal of Solid State Science and Technology. 2017; 6: 356–359.
  • 5. Wenckstern H.V. Group-III Sesquioxides: Growth, Physical Properties and Devices. Advanced Electronic Materials. 2017; 3: 1600350.
  • 6. Armstrong A.M., Crawford M.H., Jayawardena A., Ahyi A., Dhar S. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. Journal of Applied Physics. 2016; 119: 103102.
  • 7. Nikolskaya A., Okulich E., Korolev D., Stepanov A., Nikolichev D., Mikhaylov A., Tetelbaum D., Almaev A., Bolzan C.A., Buaczik A.J., Giulian R., Grande P.L., Kumar A., Kumar M., Gogova D. Ion implantation in β-Ga2O3: Physics and technology. Journal of Vacuum Science and Technology A. 2021; 39.
  • 8. Ratajczak R., Mieszczynski C., Prucnal S., Krajewski T.A., Guziewicz E., Wozniak W., Kopalko K., Heller R., Akhmadaliev S. Correlations between the structural transformations and concentration quenching effect for RE-implanted ZnO systems. Applied Surface Science. 2020; 521: 146421.
  • 9. Binet L., Gourier J. Origin of the blue luminescence of β-Ga2O3. Journal of Physics and Chemistry of Solids. 1998; 59: 1241.
  • 10. Onuma T., Nakata Y., Sasaki K., Masui T., Yamaguchi T., Honda T., Kuramata A., Yamakoshi S., Higashiwaki M.J. Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping. Applied Physics. 2018; 124: 075103.
  • 11. Vasyltsiv V., Kostyk L., Tsvetkova O., Lys R., Kushlyk M., Pavlyk B., Luchechko A. Luminescence and conductivity of β-Ga2O3 and β-Ga2O3:Mg single crystals. Acta Physica Polonica A. 2022; 141: 312–318.
  • 12. Guziewicz E., Kobyakov S., Ratajczak R., Wierzbicka A., Wozniak W., Kaminska A., Optical response of epitaxial ZnO films grown by atomic layer deposition and coimplanted with Dy and Yb. Physica Status Solidi B. 2020; 257: 1900513.
  • 13. Lorenz K., Peres M., Felizardo M., Correia J.G., Alves L.C., Alves E., López I., Nogales E., Méndez B., Piqueras J., Barbosa M. B., Araújo J.P., Gonçalves J.N., Rodrigues J., Rino L., Monteiro T., Víllora E.G., Shimamura K. Doping of Ga 2O3 bulk crystals and NWs by ion implantation. In: Proc. of SPIE. 2014; 8987:89870M
  • 14. Murmu P.P., Kennedy J., Williams G.V.M., Ruck B.J., Granville S., Chong S.V. Observation of magnetism, low resistivity, and magnetoresistance in the near-surface region of Gd implanted ZnO. Applied Physics Letters. 2012; 101: 082408.
  • 15. Hansen D.M., Zhang R., Perkins N.R., Safvi S., Zhang L., Bray K.L., Keuch T.F. Photoluminescence of Erbium-implanted GaN and in situ-doped GaN:Er. Applied Physics Letters. 1998; 72: 1244.
  • 16. Kim J., Pearton S.J., Fares C., Yang J., Ren F., Kima S., Polyakov A.Y. Radiation damage effects in Ga2O3 materials and devices. Journal of Materials Chemistry C. 2019; 7: 10–24.
  • 17. Ratajczak R., Mieszczynski C., Prucnal S., Guziewicz E., Stachowicz M., Snigurenko D., Gaca J., Wojcik M., Böttger R., Heller R., Skorupa W., Borany J.V., Turos A. Structural and optical studies of Pr implanted ZnO films subjected to a long-time or ultra-fast thermal annealing. Thin Solid Films. 2017; 643: 24–30.
  • 18. Alves E., Rita E., Wahl U., Correia J.G., Monteiro T., Soares J., Boemare C. Lattice site location and optical activity of Er implanted ZnO. Nuclear Instruments and Methods in Physics Research B. 2003; 206: 1047–1051.
  • 19. Mayer M. SIMNRA User’s Guide. Max Planck-Institute-fur-Plasmaphysik, Garching, Germany, 1997.
  • 20. Nowicki L., Turos A., Ratajczak R., Stonert A., Garrido F., Modern analysis of ion channeling data by Monte Carlo simulations. Nuclear Instruments and Methods in Physics Research B. 2005; 240: 277–282.
  • 21. Jozwik P., Nowicki L., Ratajczak R., Stonert A., Mieszczynski C., Turos A., Morawiec K., Lorenz K., Alves E. Monte Carlo simulations for ion channeling analysis of damage in dislocation-containing crystals. Journal of Applied Physics. 2019; 126: 195107.
  • 22. Turek M., Drozdziel A., Pyszniak K., Prucnal S., Maczka D., Yushkevich Y.V., Vaganov Y.A. Plasma Sources of Ions of Solids. Instrum. Exp. Tech. 2012; 55: 469–481.
  • 23. Ratajczak R., Guziewicz E., Prucnal S., Łuka G., Böttger R., Heller R., Mieszczynski C., Wozniak W., Turos A. Luminescence in the visible region from annealed thin ALD-ZnO films implanted with different rare earth ions. Physica Status Solidi A. 2018; 215: 1700889.
  • 24. Lorenz K., Alves E., Wendler E., Bilani O., Wesch W., Hayes M. Damage formation and annealing at low temperatures in ion implanted ZnO. Applied Physics Letters. 2005; 87(19): 191904.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-022dccaa-f69d-4469-b30d-e315bc7c77d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.