PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability and Availability Analysis of Transport System Composed of Dependent Subsystems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents reliability and availability analysis of the transport system, taking into account its structure, that is composed of dependent subsystems. The issues introduced are basing on the assumption that one subsystem impacts on functioning of other subsystems, meaning - disruptions occurring within the subsystem can reduce functionality and change level of safety and inoperability of others. By means of multistate approach to analysis, it has been assumed that the deterioration of one subsystem affects the reliability of other subsystems and the entire system. Following this assumption, the transport system reliability function and its basic reliability characteristics were determined. In addition, the system availability function was set out, assuming that its renewal is carried out when its reliability falls below a certain threshold. Furthermore, the reliability and availability analysis of the transport system were conducted, taking into account additional stress on its particular subsystem at certain time points. The summary contains conclusions resulting from the analysis and comparison for various additional stress levels.
Twórcy
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • [1] Blokus, A., Dziula, P.: Reliability and Availability Analysis of Critical Infrastructure Composed of Dependent Systems. Theory and Applications of Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances in Intelligent Systems and Computing. 1173, 94-104 (2020). https://doi.org/10.1007/978-3-030-48256-5_10.
  • [2] Blokus, A., Dziula, P.: Safety analysis of interdependent critical infrastructure networks. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 13, 4, 781–787 (2019). https://doi:10.12716/1001.13.04.10.
  • [3] Blokus, A., Kołowrocki, K.: Reliability and maintenance strategy for systems with aging‐dependent components. Quality and Reliability Engineering International. 35, 8, 2709–2731 (2019). https://doi.org/10.1002/qre.2552.
  • [4] Blokus-Roszkowska, A., Dziula, P.: An approach to identification of critical infrastructure systems. AIP Conf. Proc. 1738, 440005 (2016). https://doi.org/10.1063/1.4952223.
  • [5] Bloomfield, R. et al.: Preliminary interdependency analysis: An approach to support critical-infrastructure risk-assessment. Reliability Engineering & System Safety. 167, 198-217 (2017). https://doi.org/10.1016/j.ress.2017.05.030.
  • [6] Choi, T.M.: Risk analysis in logistics systems: A research agenda during and after the COVID-19 pandemic. Transportation Research Part E: Logistics and Transportation Review. 145, 102190 (2021). https://doi.org/10.1016/ j.tre.2020.102190.
  • [7] Duenas-Osorio, L. et al. Interdependent response of networked systems. ASCE Journal of Infrastructure Systems. 13, 3, 185-194 (2007). https://doi.org/ 10.1061/(ASCE)1076-0342(2007)13:3(185).
  • [8] Dvorak, Z. et al.: Assessment of Critical Infrastructure Elements in Transport. Procedia Engineering. 187, 548-555 (2017). https://doi.org/10.1016/j.proeng.2017.04.413.
  • [9] Dziula P. et. al.: On Ship Systems Multi-state Safety Analysis. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 1, 199-205 (2007).
  • [10] Dziula, P.: Selected aspects of acts of law concerning critical infrastructure protection within the Baltic Sea area. Scientific Journals Maritime University of Szczecin. 44, 173-181 (2015). http://dx.doi.org/10.17402/073.
  • [11] European Union, European Council. Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Brussels (2008).
  • [12] Eusgeld, I. et al.: System-of systems approach for interdependent critical infrastructures. Reliability Engineering and System Safety. 96, 679–686 (2011). https://doi.org/10.1016/j.ress.2010.12.010.
  • [13] Gu, Y. et al.: Performance of transportation network under perturbations: Reliability, vulnerability, and resilience. Transportation Research Part E: Logistics and Transportation Review. 133, 101809 (2020). https://doi.org/10.1016/ j.tre.2019.11.003.
  • [14] Guerrero, D. et al.: The container transport system during Covid-19: An analysis through the prism of complex networks. Transport Policy. 115, 113-125, (2022). https://doi.org/10.1016/j.tranpol.2021.10.021.
  • [15] Hall, R.W.: The architecture of transportation systems. Transportation Research Part C: Emerging Technologies. 3, 3, 129-142 (1995). https://doi.org/10.1016/0968-090X(95)00002-Z.
  • [16] Holden, R. et al.: A network flow model for interdependent infrastructures at the local scale. Safety Science. 53, 51–60 (2013). https://doi.org/10.1016/j.ssci.2012.08.013.
  • [17] Hossain, N.U.I. et al.: Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network. Reliability Engineering & System Safety. 198, 106898 (2020). https://doi.org/10.1016/j.ress.2020.106898.
  • [18] Huang, C. et al.: A method for exploring the interdependencies and importance of critical infrastructures. Knowledge-Based Systems. 55, 66-74 (2014). https://doi.org/10.1016/j.knosys.2013.10.010.
  • [19] Jałowiec, T., Dębicka, E.: Contemporary Threats to the Continuity of Transport Systems. Logistics and Transport. 34, 2, 15-23 (2017).
  • [20] Khaghani, F., Jazizadeh, F.: mD-Resilience: A Multi-Dimensional Approach for Resilience-Based Performance Assessment in Urban Transportation. Sustainability. 12, 12, 4879 (2020). https://doi.org/10.3390/su12124879.
  • [21] Li, D. et al.: Supply Chain Resilience from the Maritime Transportation Perspective: A Bibliometric Analysis and Research Directions. Fundamental Research (2023). https://doi.org/10.1016/j.fmre.2023.04.003.
  • [22] Maharjan, R., Kato, H.:. Resilient Supply Chain Network Design: A Systematic Literature Review. Transport Reviews. 42, 6, 739–761 (2022). https://doi.org/10.1080/01441647. 2022.2080773.
  • [23] Manheim, M.L.: Principles of Transport Systems Analysis. Transportation Research Forum Proceedings. 7, 9-21 (1966). http://dx.doi.org/10.22004/ag.econ.317976.
  • [24] Martinez-Pastor, B. et al.: Identifying critical and vulnerable links: A new approach using the Fisher information matrix. International Journal of Critical Infrastructure Protection. 39, 100570 (2022). https://doi.org/10.1016/j.ijcip.2022.100570.
  • [25] Murray-Tuite, P.M., Mahmassani, H.S.: Methodology for Determining Vulnerable Links in a Transportation Network. Transportation Research Record. 1882, 1, 88-96 (2004). https://doi.org/10.3141/1882-11.
  • [26] Nagurney, A., Qiang, Q.: A network efficiency measure with application to critical infrastructure networks. Journal of Global Optimization. 40, 1, 261–275 (2008). https://doi.org/10.1007/s10898-007-9198-1.
  • [27] Narasimha, P.T. et. al.: Impact of COVID-19 on the Indian seaport transportation and maritime supply chain. Transport Policy. 110, 191-203 (2021). https://doi.org/10.1016/j. tranpol. 2021.05.011.
  • [28] Notteboom, T. et al.: Disruptions and resilience in global container shipping and ports: the COVID-19 pandemic versus the 2008–2009 financial crisis. Maritime Economics& Logistics. 23, 2, 179-210 (2021). https://doi.org/ 10.1057/s41278-020-00180-5.
  • [29] Panahi, R. et al.: Developing a resilience assessment model for critical infrastructures: The case of port in tackling the impacts posed by the Covid-19 pandemic. Ocean & Coastal Management. 226, 106240 (2022). https://doi.org/10.1016/ j.ocecoaman.2022.106240.
  • [30] Patnala, P.K. et al.: Resilience for freight transportation systems to disruptive events: a review of concepts and metrics. Canadian Journal of Civil Engineering. 51, 3, 237-263 (2023). https://doi.org/10.1139/cjce-2023-0187.
  • [31] Peng, W. et al.: Assessing the vulnerability of network topologies under large-scale regional failures. Journal of Communications and Networks. 14, 4, 451–460 (2012). https://doi.org/10.1109/JCN.2012.6292252.
  • [32] Perazzi, M. et al.: Safety management systems in multimodal transport networks: the case of commercial port infrastructures. Procedia Structural Integrity. 62, 225-232 (2024). https://doi.org/10.1016/j.prostr.2024.09.037.
  • [33] Polish Parliament. Act of 26 April 2007 on Crisis Management. Warsaw (2007).
  • [34] Prochazkova, D.: Critical infrastructure safety management. Transactions on Transport Sciences. 3(4), 157–168 (2010). https://doi.org/10.2478/v10158-010-0022-0cccccc.
  • [35] Raicu, S. et al.: Dynamic Intercorrelations between Transport/Traffic Infrastructures and Territorial Systems: From Economic Growth to Sustainable Development. Sustainability. 13, 11951 (2021). https://doi.org/10.3390/ su132111951.
  • [36] Reed, D. et al.: Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Systems Journal. 3, 2, 174-180 (2009). https://doi.org/10.1109/JSYST.2009. 2017396.
  • [37] Rehak, D. et al.: Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system. International Journal of Critical Infrastructure Protection. 14, 3–17 (2016). https://doi.org/10.1016/j.ijcip.2016.06.002.
  • [38] Rinaldi, S. et al.: Identifying, understanding and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine. 21, 11-25 (2001). https://doi.org/10.1109/37.969131.
  • [39] Rueda, D., Calle, E.: Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks. International Journal of Critical Infrastructure Protection. 16, 3-12 (2017). https://doi.org/10.1016/j.ijcip.2016.11.004.
  • [40] Saidi, S. et al.: Integrated infrastructure systems — A review. Sustainable Cities and Society. 36, 1–11 (2018). https://doi.org/10.1016/j.scs.2017.09.022.
  • [41] Speranza, M.G.: Trends in transportation and logistics. European Journal of Operational Research. 264, 3, 830–836 (2018). https://doi.org/10.1016/j.ejor.2016.08.032.
  • [42] Sun, W. at al.: Resilience metrics and measurement methods for transportation infrastructure: the state of the art. Sustainable and Resilient Infrastructure. 5, 3, 168–199 (2018). https://doi.org/10.1080/23789689.2018.1448663.
  • [43] Sussman, J.M..: Introduction To Transportation Systems (2000).
  • [44] Tamvakis, P., Xenidis, J.: Resilience in Transportation Systems. Procedia - Social and Behavioral Sciences. 48, 3441-3450 (2012). https://doi.org/10.1016/j.sbspro.2012.06. 1308.
  • [45] Titko, M. et al.: Modelling Resilience of the Transport Critical Infrastructure Using Influence Diagrams. Communications - Scientific Letters of the University of Zilina. 22, 1, 102-118 (2020). http://doi:10.26552/ com.C.2020.1.102-118.
  • [46] Utne, I.B. et al.: A method for risk modeling of interdependencies in critical infrastructures. Reliability Engineering & System Safety. 96, 671-678 (2011). https://doi.org/10.1016/j.ress.2010.12.006.
  • [47] Weintrit, A. et al.: Reliability and Exploitation Analysis of Navigational System Consisting of ECDIS and ECDIS Back-up Systems. Activities in Navigation. 109-115 (2015). http://dx.doi.org/10.1201/b18513-17.
  • [48] Zdenek, D. et al.: Assessment of Critical Infrastructure Elements in Transport. Procedia Engineering. 187, 548-555 (2017). https://doi.org/10.1016/j.proeng.2017.04.413.
  • [49] Zhang, P. et al.: The robustness of interdependent transportation networks under targeted attack. Europhysics Letters. 103 ,6, 68005 (2013). https://doi.org/10.1209/0295-5075/103/68005.
  • [50] Zhang, P., Peeta, S.: A generalized modeling framework to analyze interdependencies among infrastructure systems. Transportation Research Part B: Methodological. 45, 3, 553-579 (2011). https://doi.org/10.1016/j.trb.2010.10.001.
  • [51] Zhou, Y. et al.: Resilience of Transportation Systems: Concepts and Comprehensive Review. IEEE Transactions on Intelligent Transportation Systems. 20, 12, 4262–4276 (2019). https://doi.org/10.1109/TITS.2018.2883766.
Uwagi
1. Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-022925cf-6a80-46b4-a4a0-26c0d9915dce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.