PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tuning the localized surface plasmon resonance of "core-shell Ag nanoparticles on dielectric substrates" to near-infrared window: applications to surface-enhanced Raman spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, plasmonic characteristics of SiO2-Ag and hollow core Ag nanoparticles placed on dielectric substrates are investigated and tuned to the NIR wavelength spectrum for biological applications. It is shown that by placing the core-shell Ag nanoparticles on a dielectric substrate and exciting the normal plasmon mode of the nanoparticle, it is possible to obtain strong plasmon resonances at wavelengths as long as λ = 700 nm which exhibits a red shift of more than 300 nm compared to the resonance of freestanding pure Ag nanoparticles at which normal plasmon resonance wavelength shows a sensitivity of approximately 100 nm/RIU in respect to the substrate refractive index change. “SiO2-Ag and hollow core Ag nanoparticles on silicon” are optimized to exhibit a strong normal plasmon resonance at λ = 633 nm while preserving the plasmonic field enhancement intact. Finally, a three dimensional substrate for surface-enhanced Raman spectroscopy (SERS) is designed and numerically investigated. The substrate is composed of Si nanorod array decorated with the designed nanoparticles which exhibits superior characteristics such as a uniform and gapless field enhancement and an electromagnetic enhancement factor of more than 3 × 106, an order of magnitude higher than the enhancement factor for a similar structure decorated with Au nanoparticles.
Czasopismo
Rocznik
Strony
343--355
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • School of Engineering- Emerging Technologies, University of Tabriz, Tabriz 5166616471, Iran
autor
  • School of Engineering- Emerging Technologies, University of Tabriz, Tabriz 5166616471, Iran
Bibliografia
  • [1] AMENDOLA V., PILOT R., FRASCONI M., MARAGO O.M., IATI M.A., Surface plasmon resonance in gold nanoparticles: a review, Journal of Physics: Condensed Matter 29(20), 2017, article 203002, DOI:10.1088/1361-648X/aa60f3.
  • [2] BIAGIONI P., HUANG J.S., HECHT B., Nanoantennas for visible and infrared radiation, Reports on Progress in Physics 75(2), 2012, article 024402, DOI:10.1088/0034-4885/75/2/024402.
  • [3] LE RU E.C. ETCHEGOIN P., Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects, Elsevier Science, 2009, DOI:10.1016/B978-0-444-52779-0.X0001-3.
  • [4] HAES A.J., HAYNES C.L., MCFARLAND A.D., SCHATZ G.C., VAN DUYNE R.P., ZOU S., Plasmonic materials for surface-enhanced sensing and spectroscopy, MRS Bulletin 30(5), 2005, pp. 368–375, DOI:10.1557/mrs2005.100.
  • [5] KÜHN S., HÅKANSON U., ROGOBETE L., SANDOGHDAR V., Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Physical Review Letters 97(1), 2006, article017402, DOI:10.1103/PhysRevLett.97.017402.
  • [6] WANG Y., BLACK K.C., LUEHMANN H., LI W., ZHANG Y., CAI X., WAN D., LIU S.Y., LI M., KIM P., LI Z.Y., WANG L.V., LIU Y., XIA Y., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7(3), 2013, pp. 2068–2077, DOI:10.1021/nn304332s.
  • [7] XU W., XIE L., ZHU J., XU X., YE Z., WANG C., MA Y., YING Y., Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications, ACS Photonics 3(12), 2016, pp. 2308–2314, DOI:10.1021/acsphotonics.6b00463.
  • [8] LOZANO G., RODRIGUEZ S.R.K., VERSCHUUREN M.A., RIVAS J.G., Metallic nanostructures for efficient LED lighting, Light: Science and Applications 5(6), 2016, article e16080, DOI:10.1038/lsa.2016.80.
  • [9] ATWATER H.A. POLMAN A., Plasmonics for improved photovoltaic devices, Nature Materials 9(3), 2010, pp. 205–213, DOI:10.1038/nmat2629.
  • [10] SU J., WANG D., NÖRBEL L., SHEN J., ZHAO Z., DOU Y., PENG T., SHI J., MATHUR S., FAN C., SONG S., Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection, Analytical Chemistry 89(4), 2017, pp. 2017–2531, DOI:10.1021/acs.analchem.6b04729.
  • [11] GUSELNIKOVA O., POSTNIKOV P., PERSHINA A., SVORCIK V., LYUTAKOV O., Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating, Applied Surface Science 470, 2019, pp. 219–227, DOI:10.1016/j.apsusc.2018.11.092.
  • [12] SHEN Y., LIANG L., ZHANG S., HUANG D., ZHANG J., XU S., LIANG C., XU W., Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing, Nanoscale 10, 2018, pp. 1622–1630, DOI:10.1039/C7NR08636A.
  • [13] WANG Z., ZONG S., WANG Y., LI N., LI L., LU J., WANG Z., CHEN B., CUI Y., Screening and multiple detection of cancer exosomes using an SERS-based method, Nanoscale 10, 2018, pp. 9053–9062, DOI:10.1039/C7NR09162A.
  • [14] RAVANSHAD R., ZADEH A.K., AMANI A.M., MOUSAVI S.M., HASHEMI S.A., DASHTAKI A.S., MIRZAEI E., ZARE B., Application of nanoparticles in cancer detection by Raman scattering based techniques, Nano Reviews & Experiments 9(1), 2018, article 1373551, DOI:10.1080/20022727.2017.1373551.
  • [15] SMITH A.M., MANCINI M.C., NIE S., Bioimaging: second window for in vivo imaging, Nature Nano-technology 4(11), 2009, pp. 710–711, DOI:10.1038/nnano.2009.326.
  • [16] TIAN F., CONDE J., BAO C., CHEN Y., CURTIN J., CUI D., Gold nanostars for efficient in vitro and invivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging, Biomaterials 106, 2016, pp. 87–97, DOI:10.1016/j.biomaterials.2016.08.014.
  • [17] OMAR R., NACIRI A.E., JRADI S., BATTIE Y., TOUFAILY J., MORTADA H., AKIL S., One-step synthesis of a monolayer of monodisperse gold nanocubes for SERS substrates, Journal of Materials Chemistry C5(41), 2017, pp. 10813–10821, DOI:10.1039/C7TC03069J.
  • [18] GAO Y., LI Y., WANG Y., CHEN Y., GU J., ZHAO W., DING J., SHI J., Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection, Small 11(1), 2015, pp. 77–83, DOI:10.1002/smll.201402149.
  • [19] CHOLULA-DÍAZ J.L., LOMELÍ-MARROQUÍN D., PRAMANICK B., NIETO-ARGÜELLO A., CANTÚ-CASTILLO L.A., HWANG H., Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS, Colloids and Surfaces B: Biointerfaces 163, 2018, pp. 329–335, DOI:10.1016/j.colsurfb.2017.12.051.
  • [20] LIU X.Y., HUANG J.A., YANG B., ZHANG X.J., ZHU Y.Y., Highly reproducible SERS substrate based on polarization-free Ag nanoparticles decorated SiO2/Si core-shell nanowires array, AIP Advances 5(5), 2015, article 057159, DOI:10.1063/1.4921943.
  • [21] LIN D., WU Z., LI S., ZHAO W., MA C., WANG J., JIANG Z., ZHONG Z., ZHENG Y., YANG X., Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy, ACS Nano 11(2), 2017, pp. 1478–1487, DOI:10.1021/acsnano.6b06778.
  • [22] MOHAN S., CHANDRASEKAR A., SUBRAMANIAN B., Surface enhanced Raman scattering studies of silver-gold normal and inverted core-shell nanostructures on their efficiency of detecting molecules, Procedia Engineering 92, 2014, pp. 19–25, DOI:10.1016/j.proeng.2013.10.005.
  • [23] GUO P., SIKDAR D., HUANG X., SI K.J., XIONG W., GONG S., YAP L.W., PREMARATNE M., CHENG W., Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement, Nanoscale 7, 2015, pp. 2862–2868, DOI:10.1039/C4NR06429A.
  • [24] LI A., TANG L., SONG D., SONG S., MA W., XU L., KUANG H., WU X., LIU L., CHEN X., XU C., A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1, Nanoscale 8(4), 2016, pp. 1873–1878 DOI:10.1039/C5NR08372A.
  • [25] XU L., KUANG H., XU C., MA W., WANG L., KOTOV N.A., Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells, Journal of the American Chemical Society 134(3), 2012, pp. 1699–1709, DOI:10.1021/ja2088713.
  • [26] MALINSKY M.D., KELLY K.L., SCHATZ G.C., VAN DUYNE R.P., Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles, The Journal of Physical Chemistry B 105(12), 2001, pp. 2343–2350, DOI:10.1021/jp002906x.
  • [27] KNIGHT M.W., WU Y., LASSITER J.B., NORDLANDER P., HALAS N.J., Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle, Nano Letters 9(5), 2009, pp. 2188–2192, DOI:10.1021/nl900945q.
  • [28] LUK’YANCHUK B., ZHELUDEV N.I., MAIER S.A., HALAS N.J., NORDLANDER P., GIESSEN H., CHONG C.T., The Fano resonance in plasmonic nanostructures and metamaterials, Nature Materials 9(9), 2010, pp. 707–715, DOI:10.1038/nmat2810.
  • [29] ZHANG S., BAO K., HALAS N.J., XU H., NORDLANDER P., Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed, Nano Letters 11(4), 2011, pp. 1657–1663, DOI:10.1021/nl200135r.
  • [30] VERNON K.C., FUNSTON A.M., NOVO C., GÓMEZ D.E., MULVANEY P., DAVIS T.J., Influence of particle–substrate interaction on localized plasmon resonances, Nano Letters 10(6), 2010, pp. 2080–2086, DOI:10.1021/nl100423z.
  • [31] LERMÉ J., BONNET C., BROYER M., COTTANCIN E., MANCHON D., PELLARIN M., Optical properties of a particle above a dielectric interface: cross sections, benchmark calculations, and analysis of the intrinsic substrate effects, The Journal of Physical Chemistry C 117(12), 2013, pp. 6383–6398, DOI:10.1021/jp3121963.
  • [32] MAIER S.A., Plasmonics: Fundamentals and Applications, Springer, New York, NY, 2007, DOI:10.1007/0-387-37825-1.
  • [33] KALACHYOVA Y., MARES D., JERABEK V., ZARUBA K., ULBRICH P., LAPCAK L., SVORCIK V., LYUTAKOV O., The effect of silver grating and nanoparticles grafting for LSP–SPP coupling and SERS response intensification, The Journal of Physical Chemistry C 120(19), 2016, pp. 10569–10577, DOI:10.1021/acs.jpcc.6b01587.
  • [34] ELSAYED M.Y., GOUDA A.M., ISMAIL Y., SWILLAM M.A., Silicon-based SERS substrates fabricated by electroless etching, Journal of Lightwave Technology 35(14), 2017, pp. 3075–3081.
  • [35] WEI W., DU Y., ZHANG L., YANG Y., GAO Y., Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires, Journal of Materials Chemistry C 6(32), 2018, pp. 8793–8803, DOI:10.1039/C8TC01741G.
  • [36] WEI Y., PEI H., SUN D., DUAN S., TIAN G., Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes, Journal of Physics: Condensed Matter 31(23), 2019, article 235301, DOI:10.1088/1361-648X/ab0b9d.
  • [37] SEMENOVA A.A., SEMENOV A.P., GUDILINA E.A., SINYUKOVA G.T., BRAZHE N.A., MAKSIMOV G.V., GOODILIN E.A., Nanostructured silver materials for noninvasive medical diagnostics by surface-enhanced Raman spectroscopy, Mendeleev Communications 26(3), 2016, pp. 177–186, DOI:10.1016/j.mencom.2016.04.001.
  • [38] LI C., LIU H., CUI P., YE F., YANG J., Insight into the formation of hollow silver nanoparticles using a facile hydrothermal strategy, Particuology 24, 2016, pp. 197–202, DOI:10.1016/j.partic.2015.08.003.
  • [39] XUE X., SUKHOTSKIY V., FURLANI E.P., Optimization of optical absorption of colloids of SiO2@Au and Fe3O4@Au nanoparticles with constraints, Scientific Reports 6, 2016, article 35911, DOI:10.1038/srep35911.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02288580-e2d8-4bb8-ac8b-2b01c9609a69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.