PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Improvement of fatigue life of riveted joints in helicopter airframes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using original cold-formed rivets in repairs of airframes of helicopters is difficult due to no access to inside parts of the airframe. Thus, the main aim of the study was to investigate the possibility to use the blind rivets or hybrid joints by verification the fatigue performance of such joints that must be better than with original rivets. Riveted and hybrid joints have been experimentally tested under static and fatigue loads. Furthermore, numerical calculations of stress distribution for strapped joint have been conducted. The test results covered fatigue life of lap joints and models of repaired airframe sheets using ordinary mushroom head rivets ref. 3558A-4-10, titanium driven blind bolts with pin, ref. MBF2110AB-05-150 and modified hybrid joints. Using titanium driven blind bolts with pin instead of ordinary hammer-bucked rivets, can improve the fatigue life of element made of aluminum alloy AW 2024T3. There are advantages of replacing riveted joints with modified hybrid (rivet & adhesive) joints in threefold increase in fatigue life of repaired airframe structures.
Rocznik
Strony
165--175
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Mechatronics, Armament and Aviation, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00 -908 Warsaw, Poland
  • Department of Mechatronics, Armament and Aviation, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00 -908 Warsaw, Poland
  • Department of Mechatronics, Armament and Aviation, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00 -908 Warsaw, Poland
  • Military Centre for Standardization, Quality and Codification, ul. Nowowiejska 28a, 00-909 Warsaw, Poland
Bibliografia
  • 1. Abdel Wahab M M. Fatigue in adhesively bonded joints: a review. ISRN Materials Science 2012; 2012: 1-25, https://doi.org/10.5402/2012/746308.
  • 2. Alderliesten R C. Introduction to aerospace structure and materials, Delft University of Technology, 2018.
  • 3. Banea M D, da Silva L F M, Campilho R D S G, Sat, C. Smart adhesive joints: an overview of recent developments. The Journal of Adhesion 2014; 90: 16-40, https://doi.org/10.1080/00218464.2013.785916.
  • 4. Budhe S, Banea M, D, de Barros S, da Silva L. An updated review of adhesively bonded joints in composite materials, International Journal of Adhesion & Adhesives 2017; 72: 30-42, https://doi.org/10.1016/j.ijadhadh.2016.10.010.
  • 5. Chang P, Wang J, Wing Kong Chiu, Nabil M. Chowdhury. Experimental and finite elements studies of bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy panels used in aircraft structures, Composites Part B 2016; 100: 68-77, https://doi.org/10.1016/j.compositesb.2016.06.061.
  • 6. Chaves F J P, da Silva L F M, de Moura M F S F, Dillard D A, Esteves V H C. Fracture mechanics tests in adhesively bonded joints: a literature review. The Journal of Adhesion 2014; 90: 955-92, https://doi.org/10.1080/00218464.2013.859075.
  • 7. Costa M, Viana G, da Silva L F M, Campilho R D S G. Environmental effect on the fatigue degradation of adhesive joints: a review. The Journal of Adhesion 2016; 93: 1-2, 127-146, https://doi.org/10.1080/00218464.2016.1179117.
  • 8. da Silva L F M, das Neves P J C, Adams R D, Wang A, Spelt J K. Analytical models of adhesively bonded joints-Part II: comparative study International Journal of Adhesion and Adhesives 2009; 29: 331-41, https://doi.org/10.1016/j.ijadhadh.2008.06.007.
  • 9. da Silva, L F M, das Neves P J C, Adams R D, Spelt J K. Analytical models of adhesively bonded joints-Part I: literature survey. International Journal of Adhesion and Adhesives 2009; 29: 319-30, https://doi.org/10.1016/j.ijadhadh.2008.06.005.
  • 10. Gąsior J, Komorek A, Rośkowicz M, Tkaczuk S. Ocena możliwości zastąpienia nitów typu solid w połączeniach konstrukcji lotniczych (Assessment of the potential to replace solid rivets in aircraft structural joints). Technologia i Automatyzacja Montażu 2018; 2/2018: 53-56.
  • 11. Godzimirski J, Rośkowicz M. Selection of joints for testing fatigue life of aviation rivets. Technologia i Automatyzacja Montażu 2020; 2/2020: 17-20.
  • 12. Gruber M L, Wilkins K E, Worden R E. Investigation of fuselage structure subject to widespread fatigue damage. In: Bigelow, C.A. (ed.) Proceedings of FAA/NASA Symposium on the Continued Airworthiness of Aircraft Structures, Atlanta, GA, 28-30 Aug 1996; DOT/FAA/AR-97/2: 439-459.
  • 13. Harish G, Farris T N, Wang H L, Grandt A F. Nucleation and growth of cracks in lap joints. In: 1999 USAF Aircraft Structural Integrity Program Conference, 30 Nov-2 Dec 1999; San Antonio; TX: 1-14.
  • 14. Hartman A. Fatigue tests on single lap joints in clad 2024-T3 aluminum alloy manufactured by a combination of riveting and adhesive bonding. Report NLR M.2170. NLR, Amsterdam, 1966.
  • 15. Hartman A. Some tests on the effect of fatigue loading on the friction in riveted light alloy specimens. Report NLR M. 2008. NLR, Amsterdam, 1961.
  • 16. He, X., A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives 2011; 31: 248-64, https://doi.org/10.1016/j.ijadhadh.2011.01.006.
  • 17. Heshmati M, Haghani R, Al-Emrani M. Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: state of the art. Composites Part B: Engineering 2015; 81: 259-75, https://doi.org/10.1016/j.compositesb.2015.07.014.
  • 18. Jones R, Baker A, Matthews N, Champagne V. Aircraft Sustainment and Repair. Butterworth-Heinemann, 2018; https://doi.org/10.1016/C2014-0-03919-6.
  • 19. Katnam K B, Comer A J, Roy D, da Silva L F M, Young T M. Composite repair in wind turbine blades: an overview. The Journal of Adhesion 2015; 91: 113-39, https://doi.org/10.1080/00218464.2014.900449.
  • 20. Katnam K B, da Silva L F M, Young T M. Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities. Progress in Aerospace Sciences 2013; 61: 26-42, https://doi.org/10.1016/j.paerosci.2013.03.003.
  • 21. Klimaszewski S, Leski A, Dragan K, Kurdelski M, Wrona M. Helicopter Structural Integrity Program Of Polish Mi-24 Hind Helicopters. In: Bos M.J. (eds) Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, Bridging the Gap between Theory and Operational Practice. Springer, Dordrecht 2009, https://doi.org/10.1007/978-90-481-2746-7_16.
  • 22. Komorek A, Przybyłek P. Examination of the influence of cross-impact load on bend strength properties of composite materials, used in aviation. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(4): 265-269.
  • 23. Marques E A S, da Silva L F M, Banea M D, Carbas R J C. Adhesive joints for low- and high-temperature use: an overview. The Journal of Adhesion 2015; 91: 556-85, https://doi.org/10.1080/00218464.2014.943395.
  • 24. Müller R P G. An experimental and analytical investigation on the fatigue behavior of fuselage riveted lap joints. The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3. Ph.D. thesis, TU Delft, Delft, 1995.
  • 25. Pitta S, de la Mora Carles V, Roure Fernández F, Crespo Artiaga D, Rojas Gregorio J I. On the static strength of aluminium and carbon fibre aircraft lap joint repairs, Composite Structures Volume 201, 1 October 2018: 276-290, https://doi.org/10.1016/j.compstruct.2018.06.002.
  • 26. Rośkowicz M, Smal T. Research on durability of composite materials used in repairing aircraft components. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2013; 15 (4): 349-355.
  • 27. Rudawska A, Dębski H. Experimental and numerical analysis of adhesively bonded aluminium alloy sheets joints. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2011; 1(49): 4-10.
  • 28. Sauer R A. A survey of computational models for adhesion. The Journal of Adhesion 2016;92:81-120, https://doi.org/10.1080/00218464.2014.1003210.
  • 29. Schijve J. Fatigue life until small cracks in aircraft structures. Durability and damage tolerance. In: Harris, Ch.E. (ed.) Proceedings of the FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Hampton, VA, 4-6 May 1994, NASA CP 3274: 665-680.
  • 30. Schijve, J. Multiple-site-damage of riveted joints. In: Atluri S.N., Harris C.E., Hoggart A., Miller N., Sampath, S.N.: International Workshop on Structural Integrity of Ageing Airplanes, Durability of Metal Aircraft Structures, Atlanta, GA, 31 Mar-2 Apr 1992. Atlanta Technical Publication, Atlanta; 1992: 2-27.
  • 31. Schra L, Ottens H H, Vlieger H. Fatigue crack growth in simulated Fokker 100 lap joints under MSD and SSD conditions. Report NLR CR 95729 C. NLR, Amsterdam; 1995.
  • 32. Schütz W. Zeitfestigkeit einschnittiger Leichtmetall-Nietverbindungen. Bericht Nr. F-47. Laboratorium für Betriebsfestigkeit, Darmstadt, 1963.
  • 33. Segerfröjd G, Wang G S, Palmberg B, Blom A F. Fatigue Behavior of Mechanical Joints: Critical Experiments and Statistical Analyses, ICAF 97: Fatigue in New and Ageing Aircraft: Proceedings of the 19th Symposium of the International Committee on Aeronautical Fatigue, Engineering Materials Advisory Services, Clifton-upon-Teme, England, U.K., 18-20 June 1997: 575-598.
  • 34. Segerfröjd G, Zuccherini S, Giovannelli G, Magnusson L. Fatigue behavior of Mechanical Joints - An experimental evaluation of ten different fastener systems and their influence on fatigue life. Combined Report, The Aeronautical Research Institute of Sweden, Report No. FKH R-4105, Sweden, January, 1997.
  • 35. Skorupa A, Skorupa M. Riveted Lap Joints in Aircraft Fuselage - Design, Analysis and Properties. Springer Dordrecht Heidelberg New York London, 2012, https://doi.org/10.1007/978-94-007-4282-6.
  • 36. Skorupa M, Skorupa A, Machniewicz T, Korbel A. An experimental investigation on the fatigue performance of riveted lap joint. In: Bos, M.J. (ed.) Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, Bridging the Gap between Theory and Practice, Springer, Rotterdam, 27-29 May 2009: 449-473,https://doi.org/10.1007/978-90-481-2746-7_26.
  • 37. Steadman D, Carter A, Ramakrishnan R. Characterisation on MSD in an in-service fuselage lap joint. In: 3rd Joint FAA/DoD/NASA Conference on Aging Aircraft, Albuquerque, N.M., Sept 1999 (Proceedings on CD-Rom); 1999.
  • 38. Stępień S, Szajnar S, Jasztal M. Problems of military aircraft crew's safety in condition of enemy counteraction. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (3): 441-446, https://doi.org/10.17531/ein.2017.3.15.
  • 39. Szolwinski M P. The mechanics and tribology of fretting fatigue with application to riveted lap joints, PhD dissertation West Layfayette, IN, USA Purdue University, USA, 1998.
  • 40. Szymczyk E. Numeryczna analiza zjawisk lokalnych w połączeniach nitowych konstrukcji lotniczych (Numerical analysis of local phenomena in riveted joints of aircraft structures). WAT, Warszawa, 2016.
  • 41. Turaga V R S. Umamaheswar, Ripudaman Singh, Modelling of a patch repair to a thin cracked sheet, Engineering Fracture Mechanics, Volume 62, Issues 2-3, January-February 1999: 267-289, https://doi.org/10.1016/S0013-7944(98)00088-5.
  • 42. Underhill P R, Juurlink J, DuQuesnay D L. The use of safety cuts in fatigue damaged fastener hole repair, International Journal of Fatigue 91, Part 1, October 2016: 242-247, https://doi.org/10.1016/j.ijfatigue.2016.06.014.
  • 43. Urban M R. Analysis of the fatigue life of riveted sheet metal helicopter airframe joints, International Journal of Fatigue; 2003; 25: 1013-1026, https://doi.org/10.1016/j.ijfatigue.2003.08.003.
  • 44. Witkowski R. Wprowadzenie do wiedzy o śmigłowcach (Introduction to helicopter topics). Biblioteka Naukowa Instytutu Lotnictwa, Warsaw, Poland, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0226aea7-c8d7-4765-89d0-d69e03b5ba19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.