Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of the compression tests for carbon-epoxy composites in order to assess the amount of energy absorbed depending on the process velocity and content of axial fibres. Two types of prepreg (UD 200 g/m2 and woven 160 g/m2) were used to prepare the specimens with a diameter of 20 mm and a height of 34 mm. The specimens were subjected to compression under various speed conditions (static, dynamic and SHPB tests). The calculated specific energy absorption values showed a 50–60% decrease with increasing process velocity and depending on the type of specimens architecture. The highest energy values were absorbed by the specimens with the highest share of axial fibres in the sample.
Wydawca
Rocznik
Tom
Strony
94--102
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland
autor
- Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw 46, Poland
Bibliografia
- 1. Mazumdar S.K. Composites Manufacturing: Materials, Product, and Process Engineering. CRC-Press, 2002.
- 2. Abosbaia A., Mahdi E., Hamouda A., Sahari B., Mokhtar A. Energy absorption capability of laterally loaded segmented composite tubes. Composite Structures, 70, 2005, 356–373.
- 3. Trzepiecinski T., Ryzinska G., Gromada M., Biglar M. 3D microstructure-based modelling of the deformation behaviour of ceramic matrix composites. Journal of The European Ceramic Society, 38 (8) 2018, 2911–2919
- 4. Trzepiecinski T., Ryzinska G., Biglar M., Gromada M. Modelling of multilayer actuator layers by ho-mogenisation technique using Digimat software. Ceramics International, 43(3), 2017, 3259- 3266
- 5. Wu Yufeng, Yong Kim Gap. Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing. Acta Materialia, 58(13), 2010, 4398–4405
- 6. Alkbir M., Sapuan S., Nuraini A., Ishak M.. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Composite Structures, 148, 2016, 59–73.
- 7. Carruthers J., Kettle A. and Robinson A. Energy Absorption Capability and Crashworthiness of Composite Material Structures: A Review. Applied Mechanics Reviews, 51, 1998, 635–649.
- 8. Farley G.L. The effect of crushing speed on the energy – absorption capability of composite tubes. Journal of Composite Materials, 25, 1991, 1314–1329.
- 9. Ghasemnejad H., Hadavinia H., Aboutorabi A. Effect of delamination failure in crashworthiness analysis of hybrid composite box structures. Materials & Design, 31, 2010, 1105–1116.
- 10. Hull D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Composites Science and Technology, 40, 1991, 377–421.
- 11. Mahdi E., Hamouda A.M.S., Sen A.C. Quasi-static crushing of hybrid and nonhybrid natural fibre composite solid cones. Composite Structures, 66, 2004, 647–663
- 12. Oshkovr S.A., Eshkoora R.A., Taherb S.T., Ariffina A.K., Azhari C.H. Crashworthiness characteristics investigation of silk/epoxy composite square tubes. Composite Structures, 94, 2012, 2337–2342.
- 13. Yan L., Chouwa N., Jayaraman K. On Energy Absorption Capacity, Flexural and Dynamic Properties of Flax/Epoxy Composite Tubes. Fibers and Polymers, 15, 2014, 1270–1277.
- 14. Farley G.L., Jones R.M. Crushing characteristic of continuous fiber-reinforced composite tubes. Journal of Composite Materials, 26, 1992, 37–50.
- 15. Mahdi E., Sahari B., Hamouda A., Khalid Y. An experimental investigation into crushing behavior of filament-wound laminated cone-cone intersection composite shell. Composite Structures, 51, 2001, 211–219.
- 16. Mamalis A., Manolakos D., Ioannidis M., Papapostolou D. On the experimental investigation of crash energy absorption in laminate splaying collapse mode of FRP tubular components. Composite Structures, 70, 2005, 413–429.
- 17. Ramakrishna S., Hamada H., Maekawa Z. Energy absorption behavior of carbon fiber reinforced thermoplastic composite tubes. Journal of Thermoplastic Composite Materials, 14, 1995, 1121–1141.
- 18. Thornton P.H., Edward J. Energy Absorption in Composite Tubes. Journal of Composite Materials, 16, 1982, 521–545.
- 19. Carroll M., Ellyin F., Kujawski D., Chiu A.S. The rate-dependent behaviour of ±55 filament-wound glass fibre/epoxy tubes under biaxial loading. Composites Science and Technology, 55, 1995, 391–403.
- 20. Hou T., Pearce G.M.K., Prusty B.G., Kelly D.W., Thomson R.S. Pressurized composite tubes as variable load energy absorbers. Composite Structures, 120, 2015, 346–357.
- 21. Tao W., H., Robertson W., E., Thornton P.,H. Effects of material properties and crush conditions on the crush energy absorption of fiber composite rods. Composite Science and Technology, 47, 1993, 405–418
- 22. Mamalis A.G., Manolakos D.E., Ioannidis M.B., Papapostolou D.P. The static and dynamic axial collapse of CFRP square composite tubes, finite element modelling. Composite Structures, 74, 2006, 213–225.
- 23. Mamalis A.G., Robinson M., Manolakos D.E., Demosthenous G.A., Ioannidis M.B., Carruthers J. Crashworthy capability of composite material structures. Composite Structures, 37, 1997, 109–134.
- 24. Yang Y., Nakai A., Hamada H. A method to improve the energy absorption capability of fibre-reinforced composite tubes. International Journal of Crashworthiness, 14, 2009, 315–322.
- 25. David M., Johnson A., Voggenreiter H. Analysis of Crushing Response of Composite Crashworthy Structures. Applied Composite Materials, 20, 2013, 773–787.
- 26. Lavoie J.A., Kellas S. Dynamic crush tests of energy-absorbing laminated composite plates. Composites Part A, 27, 1996, 467–475.
- 27. Ryzińska G., David M., Prusty G., Tarasiuk J., Wroński S. Effect of fibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushing. Composite Structures, 227, 2019, 111292.
- 28. Mamalis A., Manolakos D., Demosthenous G., Ioannidis M., Analysis of failure mechanisms observed in axial collapse of thin-walled circural fiberglass composite tubes. Thin-Walled Structures, 24, 1996, 335–352.
- 29. Mamalis A.G., Manolakos D.E., Demosthenous G.A., Ioannidis M.B. The static and dynamic axial collapse of fibreglass composite automotive frame rails. Composite Structures, 34, 1996, 77–90.
- 30. Jackson A., Dutton S., Gunnion A., Kelly D. Investigation into laminate design of open carbon–fibre/ epoxy sections by quasi–static and dynamic crushing. Composite Structures, 93, 2011, 2646–2654.
- 31. Gupta N., Velmurugan R., Gupta S. An analysis of axial crushing of composite tubes. Journal of Composite Materials, 31, 1997, 1262–1286.
- 32. Ryzińska G., Gieleta R. Experimental studies on impact of CFRP tubes structure on amount of absorbed energy under dynamic conditions. Composites Theory and Practice, 4, 2018, 196–201.
- 33. Jacob G.C., Starbuck J.M., Fellers, J.F., Simunovic, S. Energy Absorption in Chopped Carbon Fiber Epoxy Composites for Automotive Crashworthiness. Polymer Journal, 35, 2003, 560–567.
- 34. Chen W., Song B. Split Hopkinson (Kolsky) Bar. Design, Testing and Applications. Springer, 2011.
- 35. Sharpe W.N., Springer Handbook of Experimental Solid Mechanics. Springer, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-022500cd-b401-4c1f-948a-771fe1543e46