PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoslotted microring resonator for high figure of merit refractive index sensing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nanoslotted microring resonator (NSMR) with enhanced light-matter interaction has been designed, which can be used for high sensitive refractive index sensing. The performance of the device is investigated theoretically based on a three-dimensional finite-difference time-domain (3D-FDTD) method. In order to achieve high figure of merit sensing, the nanoslot geometry is exploited to make the optical field strongly localized inside the low index region and overlap sufficiently with the analytes. By using the 3D-FDTD method, the proposed NSMR sensor device achieves a high Q-factor (Q > 105) and sensitivity ~100 nm/RIU (RIU – refractive index unit). Moreover, the strong light confinement introduced by the nanoslot in NSMR results in the sensor figure of merit as high as 6.73 × 103. Thus, the design we proposed is a promising platform for refractive index-based biochemical sensing and lab-on-a-chip applications.
Czasopismo
Rocznik
Strony
37--47
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • State Key Laboratory of Information Photonics and Optical Communication, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
  • State Key Laboratory of Information Photonics and Optical Communication, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
  • State Key Laboratory of Information Photonics and Optical Communication, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
  • Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
Bibliografia
  • [1] XIA F., ROOKS M., SEKARIC L., VLASOV Y., Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects, Optics Express 15(19), 2007,pp. 11934–11941, DOI:10.1364/OE.15.011934.
  • [2] XU D.-X., VACHON M., DENSMORE A., MA R., DELÂGE A., JANZ S., LAPOINTE J., LI Y., LOPINSKI G., ZHANG D., LIU Q.Y., CHEBEN P., SCHMID J.H., Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach, Optics Letters 35(16), 2010, pp. 2771–2773, DOI:10.1364/OL.35.002771.
  • [3] IQBAL M., GLEESON M., SPAUGH B., TYBOR F., GUNN W., HOCHBERG M., BAEHR-JONES T., BAILEY R., GUNN L.C., Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation, IEEE Journal of Selected Topics in Quantum Electronics 16(3), 2010,pp. 654–661, DOI:10.1109/JSTQE.2009.2032510.
  • [4] QAVI A.J., KINDT J.T., GLEESON M.A., BAILEY R.C., Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection, Analytical Chemistry 83(15), 2011, pp. 5949–5956, DOI:10.1021/ac201340s.
  • [5] VOS K.D., BARTOLOZZI I., SCHACHT E., BIENSTMAN P., BAETS R., Silicon-on-insulator microring resonator for sensitive and label-free biosensing, Optics Express 15(12), 2007, pp. 7610–7615, DOI:10.1364/OE.15.007610.
  • [6] LIANG F., CLARKE N., PATEL P., LONCAR M., QUAN Q., Scalable photonic crystal chips for high sensitivity protein detection, Optics Express 21(26), 2013, pp. 32306–32312, DOI:10.1364/OE.21.032306.
  • [7] HU S., QIN K., KRAVCHENKO I.I., RETTERER S.T., WEISS S.M., Suspended microring resonator for enhanced biomolecule detection sensitivity, Proceedings of SPIE 8933, 2014, article 893306, DOI:10.1117/12.2041056.
  • [8] HIREMATH K.R., NIEGEMANN J., BUSCH K., Analysis of light propagation in slotted resonator based systems via coupled-mode theory, Optics Express 19(9), 2011, pp. 8641–8655, DOI:10.1364/OE.19.008641.
  • [9] GYLFASON K.B., CARLBORG C.F., KAŹMIERCZAK A., DORTU F., SOHLSTRÖM H., VIVIEN L., BARRIOS C.A., VANDER WIJNGAART W., STEMME G., On-chip temperature compensation in an integrated slot-wave-guide ring resonator refractive index sensor array, Optics Express 18(4), 2010, pp. 3226–3237, DOI:10.1364/OE.18.003226.
  • [10] ZHANG W., SERNA S., ROUX X.L., ALONSO-RAMOS C., VIVIEN L., CASSAN E., Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors, Optics Letters 40(23), 2015, pp. 5566–5569, DOI:10.1364/OL.40.005566.
  • [11] CLAES T., MOLERA J.G., DE VOS K., SCHACHT E., BAETS R., BIENSTMAN P., Label-free biosensing witha slot-waveguide-based ring resonator in silicon on insulator, IEEE Photonics Journal 1(3), 2009, pp. 197–204, DOI:10.1109/JPHOT.2009.2031596.
  • [12] LEE M., FAUCHET P.M., Two-dimensional silicon photonic crystal based biosensing platform forprotein detection, Optics Express 15(8), 2007, pp. 4530–4535, DOI:10.1364/OE.15.004530.
  • [13] KANG C., PHARE C.T., VLASOV Y.A., ASSEFA S., WEISS S.M., Photonic crystal slab sensor with enhanced surface area, Optics Express 18(26), 2010, pp. 27930–27937, DOI:10.1364/OE.18.027930.
  • [14] LEE M.R., FAUCHET P.M., Nanoscale microcavity sensor for single particle detection, Optics Letters32(22), 2007, pp. 3284–3286, DOI:10.1364/OL.32.003284.
  • [15] BUSWELL S.C., WRIGHT V.A., BURIAK J.M., VAN V., EVOY S., Specific detection of proteins using photonic crystal waveguides, Optics Express 16(20), 2008, pp. 15949–15957, DOI:10.1364/OE.16.015949.
  • [16] KANG C., WEISS S.M., VLASOV Y.A., ASSEFA S., Optimized light-matter interaction and defect hole placement in photonic crystal cavity sensors, Optics Letters 37(14), 2012, pp. 2850–2852, DOI:10.1364/OL.37.002850.
  • [17] BOGAERTS W., BAETS R., DUMON P., WIAUX V., BECKX S., TAILLAERT D., LUYSSAERT B., VANCAMPENHOUT J., BIENSTMAN P., VAN THOURHOUT D., Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology, Journal of Lightwave Technology 23(1), 2005, pp. 401–412, DOI:10.1109/JLT.2004.834471.
  • [18] PAL S., GUILLERMAIN E., SRIRAM R., MILLER B.L., FAUCHET P.M., Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing, Biosensors and Bioelectronics 26(10),2011, pp. 4024–4031, DOI:10.1016/j.bios.2011.03.024.
  • [19] OGUSU K., TAKAYAMA K., Optical bistability in photonic crystal microrings with nonlinear dielectric materials, Optics Express 16(10), 2008, pp. 7525–7539, DOI:10.1364/OE.16.007525.
  • [20] YANG D., ZHANG X., Design of freely suspended photonic crystal microfiber cavity sensors array in a general single mode fiber, Optics Communications 435, 2019, pp. 11–15, DOI:10.1016/j.optcom.2018.11.019.
  • [21] QUAN Q., LONCAR M., Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities, Optics Express 19(19), 2011, pp. 18529–18542, DOI:10.1364/OE.19.018529.
  • [22] YANG D., WANG C., JI Y., Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing, IEEE Photonics Journal 8(2), 2016, article 4500608, DOI:10.1109/JPHOT.2016.2536942.
  • [23] YANG D., TIAN H., JI Y., High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing, Applied Optics 54(1), 2015, pp. 1–5, DOI:10.1364/AO.54.000001.
  • [24] KIM S., KIM H.-M., LEE Y.-H., Single nanobeam optical sensor with a high Q-factor and high sensitivity, Optics Letters 40(22), 2015, pp. 5351–5354, DOI:10.1364/OL.40.005351.
  • [25] MAKINO S., SATO T., ISHIZAKA Y., FUJISAWA T., SAITOH K., Three-dimensional finite-element time-domain beam propagation method and its application to 1-D photonic crystal-coupled resonator optical waveguide, Journal of Lightwave Technology 33(18), 2015, pp. 3836–3842, DOI:10.1109/JLT.2015.2446514.
  • [26] HENDRICKSON J., SOREF R., SWEET J., BUCHWALD W., Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation, Optics Express 22(3), 2014, pp. 3271–3283, DOI:10.1364/OE.22.003271.
  • [27] LAI W.-C., CHAKRAVARTY S., ZOU Y., CHEN R.T., Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing, Optics Letters 37(7), 2012, pp. 1208–1210, DOI:10.1364/OL.37.001208.
  • [28] YANG D., ZHANG P., TIAN H., JI Y., QUAN Q., Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing, IEEE Photonics Journal 7(5), 2015, article 4501408, DOI:10.1109/JPHOT.2015.2476761.
  • [29] RYCKMAN J.D., WEISS S.M., Localized field enhancements in guided and defect modes of a periodic slot waveguide, IEEE Photonics Journal 3(6), 2011, pp. 986–995, DOI:10.1109/JPHOT.2011.2170966.
  • [30] LIN T., ZHANG X., ZHOU G., SIONG C.F., DENG J., Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing, Journal of the Optical Society of America B 32(9), 2015, pp. 1788–1791, DOI:10.1364/JOSAB.32.001788.
  • [31] WANG C., QUAN Q., KITA S., LI Y., LONČAR M., Single-nanoparticle detection with slot-mode photonic crystal cavities, Applied Physics Letters 106(26), 2015, article 261105, DOI:10.1063/1.4923322.
  • [32] SCULLION M.G., DI FALCO A., KRAUSS T.F., Slotted photonic crystal cavities with integrated micro-fluidics for biosensing applications, Biosensors and Bioelectronics 27(1), 2011, pp. 101–105, DOI:10.1016/j.bios.2011.06.023.
  • [33] YANG D., GAO F., CAO Q.-T., WANG C., JI Y., XIAO Y.-F., Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities, Photonics Research 6(2), 2018, pp. 99–108, DOI:10.1364/PRJ.6.000099.
  • [34] SHERRY L.J., CHANG S.-H., SCHATZ G.C., VAN DUYNE R.P., WILEY B.J., XIA Y., Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Letters 5(10), 2005, pp. 2034–2038, DOI:10.1021/nl0515753.
  • [35] URBONAS D., BALČYTIS A., VAŠKEVIČIUS K., GABALIS M., PETRUŠKEVIČIUS R., Air and dielectric bands photonic crystal microringresonator for refractive index sensing, Optics Letters 41(15), 2016, pp. 3655–3658, DOI:10.1364/OL.41.003655.
  • [36]http://www.lumerical.com(accessed October 2018).
  • [37] LEE J.Y., FAUCHET P.M., Slow-light dispersion in periodically patterned silicon microring resonators, Optics Letters 37(1), 2012, pp. 58–60, DOI:10.1364/OL.37.000058.
  • [38] MCGARVEY-LECHABLE K., BIANUCCI P., Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators, Optics Express 22(21), 2014, pp. 26032–26041, DOI:10.1364/OE.22.026032.
  • [39] MCGARVEY-LECHABLE K., HAMIDFAR T., PATEL D., XU L., PLANT D.V., BIANUCCI P., Slow light inmass-produced, dispersion-engineered photonic crystal ring resonators, Optics Express 25(4), 2017, pp. 3916–3926, DOI:10.1364/OE.25.003916.
  • [40] CHAKRAVARTY S., ZOU Y., LAI W.-C., CHEN R.T., Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon, Biosensors and Bioelectronics 38(1), 2012, pp. 170–176, DOI:10.1016/j.bios.2012.05.016.
  • [41] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystals: Molding the Flowof Light, 2nd Ed., Princeton University Press, Princeton, NJ, USA, 2008.
  • [42] YANG D., TIAN H., JI Y., QUAN Q., Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors, Journal of the Optical Society of America B 30(8), 2013, pp. 2027–2031, DOI:10.1364/JOSAB.30.002027.
  • [43] ALMEIDA V.R., XU Q., BARRIOS C.A., LIPSON M., Guiding and confining light in void nanostructure, Optics Letters 29(11), 2004, pp. 1209–1211, DOI:10.1364/OL.29.001209.
  • [44] ARMANI A.M., VAHALA K.J., Heavy water detection using ultra-high-Q microcavities, Optics Letters 31(12), 2006, pp. 1896–1898, DOI:10.1364/OL.31.001896.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-021b50d5-5eb8-4104-b52e-2fd9d958aa7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.