PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of YAG:Ce phosphors for white LEDs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Worldwide commercial interest in the production of cerium doped yttrium aluminium garnet (YAG:Ce) phosphors is reflected in the widespread use of white light emitting devices. Despite of the fact that YAG:Ce is considered a “cool phosphor” it is the most important in white LED technology. This article reviews the developed techniques for producing phosphors with superior photoluminescence efficiency, including solid-state reaction, sol-gel and (co)precipitation methods. Also, by co-doping with rare earth elements, a red/blue shift is reached in the spectrum. The characteristics of YAG:Ce phosphors are investigated because the properties of the phosphors are strongly influenced by the synthesis routes and the sintering temperature treatment. After the phase analysis, morphology and emission studies of the phosphors there may be seen the conditions when the transition from the amorphous phase to the crystalline phase appears, when luminescent properties are influenced by the crystalline form, purity, average size of the particles, co-doping and so on.
Słowa kluczowe
Twórcy
autor
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
autor
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
autor
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
Bibliografia
  • 1. M. Cates, S. Allison, Phosphor Thermometry, OAK Ridge National Laboratory, US Departament of Energy, http://web.ornl.gov/sci/phosphors/Pdfs/tutorial.pdf.
  • 2. P. Rai, M.K. Song, H.M. Song, J.H. Kim, Y.S. Kim, I.H. Lee, and Y.T. Yu, “Synthesis, growth mechanism and photoluminescence of monodispersed cubic shape Ce doped YAG nanophosphor”, Ceram. Int., 38, 235-242 (2012) doi:10.1016/j.ceramint.2011.06.057.
  • 3. R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs”, J. Nanopart. Res. 14, 886, 1-13 (2012) doi: 10.1007/s11051-012-0886-5.
  • 4. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, and M. Nakatsuka, “Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED” in IUMRS-ICA 2008 Symposium, “AA. Rare-earth related material processing and functions”, IOP Conf. Series: Mater. Sci. Eng. 1,012031 (2009) doi: 10.1088/1757-8981/1/1/012031.
  • 5. A. A. Setlur, “Phosphors for LED-based solid-state lighting”, The Electrochemical Society Interface 16, 32-36 (2009), http://www.electrochem.org/dl/interface/wtr/wtr09/wtr09_p032-036.pdf.
  • 6. K.V.K. Gupta, A. Muley, P. Yadav, C.P. Joshi, and S.V. Moharil, “Combustion synthesis of YAG:Ce and related phosphors”, Appl. Phys. B, 105, 479-484 (2011) doi: 10.1007/s00340-011-4685-y.
  • 7. C.A. Geiger, “Garnet: A key phase in nature, the laboratory, and technology”, Elements 9, 447-452, (2013) doi: 10.2113/gselements.9.6.447.
  • 8. C. Wu, A. Luo, G. Du , X. Qin, and W. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method”, Mat. Sci. Semicon. Proc. 16, 679-685 (2013) http://dx.doi.org/10.1016/j.mssp.2012.12.008.
  • 9. M. Faheem and K. Lynn, “Structural and thermal properties of Tb, Ce Doped Y2.97Gd0.03Al2Ga3O12 single crystals”, American J. Anal. Chem. 5, 695-700 (2014), http://dx.doi.org/10.4236/ajac.2014.511078.
  • 10. P.J. Yadav, C.P. Joshi, and S.V. Moharil, “Combustion synthesis of multicomponent ceramic phosphors for solid state lighting”, Int. J. of Self-Propagating High-Temperature Synthesis, 21, 1, 32-37 (2012) doi: 10.3103/S1061386212010 13X.
  • 11. H.K. Yang, H.M. Noh, and J.H. Jeong, “Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode”, Solid. State Sci., 27, 43-46 (2014) http://dx.doi.org/10.1016/j.solidstatesciences.2013.11.007.
  • 12. O. Milosevic, L. Mancic, M.E. Rabanal, J.M. Torralba, B. Yang, and P. Townsend, “Structural and luminescence properties of Gd2O3:Eu3+ and Y3Al5O12:Ce3+ phosphor particles synthesized via aerosol”, J. Electrochem. Soc. 152, 9, G707-G713 (2005).
  • 13. Y. Pan, M. Wu, and Q.Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods”, J. Phys. Chem. Solids, 65, 845-850 (2004) doi:10.1016/jpcs.2003.08.018.
  • 14. H.S. Janga, W.B. Ima, D.C. Leeb, D.Y. Jeona, and S.S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs”, J. Lumin. 126, 371-377 (2007) doi:10.1016/j.jlumin.2006.08.09
  • 15. S. Chawla, T. Roy, K. Majumder, and A. Yadav “Red enhanced YAG:Ce, Pr nanophosphor for white LEDs”, J. Exp. Nanosci. 1-9 (2012) doi:10.1080/17458080.2012.714481
  • 16. R.A. Hansel, S.W. Allison, and D.G. Walker, “Temperature dependent fluorescence of Ce-doped garnets for use as thermographic phosphors” (2008) http://telab.vuse.vanderbilt.edu/docs/hansel08-MRS.pdf
  • 17. K. Toda, “New processing of LED phosphors”, Trans. Electrical And Electronic Materials 13, 225-228 (2012) doi: http://dx.doi.org/10.4313/TEEM.2012.13.5.225.
  • 18. A. Saat, H. Harun, and Z. Hamzah, “Synthesis and characterization of YAG:Ce prepared by solid state reaction method”, Malaysian J. Anal. Sci. 15, 1, 101-105 (2011).
  • 19. S.C. Huang, J.K. Wu, and W.J. Hsu, “Particle size effect on the packaging performance of YAG:Ce phosphors in white LEDs”, Int. J. Appl. Ceram. Technol. 6, 465-469 (2009).
  • 20. C.S. Chou, C.Y. Wu, C.H. Yeh, R.Y. Yang, and J.H. Chen, “The optimum conditions for solid-state-prepared (Y3-xCex)Al5O12 phosphor using the Taguchi method”, Adv. Powder Technol. 23, 97-103 (2012) doi:10.1016/j.apt.2010.12.016.
  • 21. C.W. Won, H.H. Nersisyan, H.I. Won, J.H. Lee, and K.H. Lee, “Eficient solid-state route for the preparation of spherical YAG.Ce phosphor particles”, J. Alloy. Compd. 509, 2621-2626 (2011) doi: 10.1016/j.jallcom.2010.11.143.
  • 22. C.C. Lin, Y.S. Zheng, H.Y. Chen, C.H. Ruan, G.W. Xiao, and R.S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with yellow/red phosphors”, J. Electrochem. Soc. 157, H900-H903 (2010).
  • 23. Y. Pan, M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor”, Mat. Sci. Eng., 106, 251-256 (2004) doi:10.1016/j.mseb. 2003.09.031.
  • 24. Y.S. Lin, and R.S. Liu, “Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination”, J. Lumin. 122-123, 580-582 (2007) doi: 10.1016/j.jlumin.2006.01.230.
  • 25. M. Upasani, B. Butey, and S.V. Moharil, “Luminescence studies on lanthanide ions (Gd3+, Tb3+) doped YAG:Ce phosphors by combustion synthesis”, IOSR-JAP 6, 28-33 (2014) www.iosrjoumals.org
  • 26. D. Michalik, M. Sopicka-Lizer, J. Plewa, and T. Pawlik, “Application of mechanochemical processing to synthesis of YAG:Ce garnet powder”, Archives Of Metallurgy and Materials 56, 1257-1264 (2011).
  • 27. K. Zhang, H. Liu, Y. Wu, and W. Hu, “Synthesis of (Y,Gd)3Al5O12:Ce nanophosphor by co-precipitation method and its luminescence behavior”, J. Mater. Sci. 42, 9200-9204 (2007) doi: 10.1007/s10853-007-1913-2.
  • 28. Z. Na, W. Dajian, L. Lan, M. Yanshuang, Z. Xiaosong, and M. Nan, “YAG:Ce Phosphors for WLED via Nano-Pesudoboehmite Sol-Gel Route”, J. Rare Earth 24,294-297 (2006).
  • 29. Z. Le, L. Zhou, Z. Jinzhen, Y. Hao, H. Pengde, C. Yan, and Z. Qitu, “Citrate sol-gel combustion preparation and photoluminescence properties of YAG:Ce phosphors”, J. Rare Earth 30, 289-296 (2012) doi: 10.1016/S1002-0721(12)60040-4.
  • 30. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Lumine scence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances”, Opt. Mater. Express 4, 449-655 (2014) doi:10.1364/OME.4.000649
  • 31. A.B. Munoz Garcia, “First-principles studies on Ce-doped YAG (Y3Al5O12), Codoping, antisite defects and Ce3+ 4f-5d transitions”, Autonomous University of Madrid, Faculty of Science, Department of Chemistry, Dissertation Thesis (2011) https://repositorio.uam.es/bitstream/handle/10486/6278/38176_mu%C3%B1oz_garcia_ana_belen.pdf?sequence=1
  • 32. N. Pradal, G. Chadeyron, A. Potdevin, J. Deschamps, and R. Mahioub, “Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions”, J. Eur. Ceram. Soc. 33, 1935-1945 (2013) http://dx.doi.Org/10.1016/j.jeurceramsoc.2013.02.004
  • 33. S.M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in optical properties of Ce: YAG crystals under annealing and irradiation processing”, Cryst. Res. Technol. 34, 1031-1036 (1999).
  • 34. H.M. Lee, C.C. Cheng, and C.Y. Huang, “The synthesis and optical property of solid-state prepared YAG:Ce phosphor by a spray-drying method”, Mat.Res.Bull. 44, 1081-1086 (2009) doi: 10.1016/j.materresbull.2008.10.006.
  • 35. A. Lakshmanan, R.S. Kumar, V. Sivakumar, P.C. Thomas, and M.T. Jose, “Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes”, Indian J. Pure Ap. Phy. 49, 303-307 (2011).
  • 36. T. Kim and J.K. Lee, “Template-free Synthesis and characterization of spherical Y3Al50 12:Ce3+(YAG:Ce) nanoparticles”, Bull. Korean Chem. Soc. 35, 2917-2921 (2014) http://dx.doi.org/10.5012/bkcs.2014.35.10.2917
  • 37. P.C. Lin, C.H. Huangb, and W.R. Liu, “An efficient nitridation approach to enhance luminescent intensity of YAG : Ce3+ phosphor by using hexamethylenetetramine”, J. Ceram. Process. Res. 15, 185-188 (2014).
  • 38. C.Q. Li, H.B. Zuo, M. F. Zhang, J.C. Han, and S.H. Meng, “Fabrication of transparent YAG ceramics by traditional solid-state-reaction method”, Trans. Nonferrous Met. Soc. China 17, 148-153 (2007).
  • 39. M. Zeng, Y. Ma, Y. Wang, and C. Pei, “The effect of precipitant on co-precipitation synthesis of yttrium aluminum garnet powders”, Ceram. Int. 38, 6951-6956 (2012) http://dx.doi.org/10.1016/j.ceramint.2012.05.066.
  • 40. Y.T. Niena, Y.L. Chena, I.G. Chena, C.S. Hwanga, Y.K. Sub, S.J. Changb, and F.S. Juang, “Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatmen”, Mat. Chem. Phys. 93, 79-83 (2005) doi: 10.1016/j.matchemphys.2005.02.017
  • 41. S. Nishiura, S. Tanabe , K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED”, Opt. Mater. 33, 688-691 (2011) doi:10.1016/j.optmat.2010.06.005
  • 42. R. Hana, D. Gaob, and K. Chen, “Y3Al5O12 nanocrystallites prepared from a novel crystalline precursor”, Adv Mat Res 306-307, 1142-1147 (2011).
  • 43. A. Potdevin, N. Pradal, M.L. Franęois, G. Chadeyron, D. Boyer, and R. Mahiou, “Microwave-induced combustion synthesis of luminescent aluminate powders”, (cap 9), pp. 189-212, Sintering - Methods and Products, Dr. Volodymyr Shatokha (Ed.), ISBN: 978-953-51-0371-4, InTech, 2012 http://www.intechopen.com/books/sintering-methods-and-products/microwave-induced-combustion-synthesis-of-luminescent-aluminate-powders
  • 44. Y. Lv, W. Zhang, H. Liu, Y. Sang, H. Qin, J. Tan, and L. Tong, “Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method”, Powder Techn. 217, 140-147 (2012) doi: 10.1016/j.powtec. 2011.10.020
  • 45. E. Garskaite, D. Jasaitis, and A. Kareiva, “Sol-gel preparation and electrical behaviour of Ln:YAG (Ln=Ce,Nd,Ho,Er)”, J. Serb. Chem. Soc. 68, 8-9, 677-684 (2003).
  • 46. D. Jia, “Nanophosphors for white light LEDS”, Chem. Eng. Commun. 194, 1666-1687 (2007) doi: 10.1080/00986440701446359.
  • 47. C.J. Liu, R.M. Yu, Z.W. Xu, J. Cai, X.H. Yan, and X.T. Luo, “Crystallization, morphology and luminescent properties of YAG:Ce3+ phosphor powder prepared by polyacrylamide gel method”, Trans. Nonferrous Met. Soc. China 17, 1093-1099 (2007).
  • 48. X.H. Yan , S.S. Zheng, R.M Yu, J. Cai, Z.W. Xu, C.J. Liu, and X.T. Luo, “Preparation of YAG:Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties”, Trans. Nonferrous Met. Soc. China 18, 648-653 (2008).
  • 49. P.A. Tanner, L. Fu, L. Ning, B.M. Cheng, and M.G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels”, J. Phys.: Condens. Matter 19, 216213-216227 (2007) doi: 10.1088/0953-8984/19/21/216213
  • 50. N. Kaithwas, M. Dave, S. Karb, and K.S. Bartwal, “Structural features of Ce doped YAG nanoparticles synthesized by modified sol-gel method”, Physica E 44, 1486-1489 (2012) http://dx.d0i.0rg/l0.1016/j.physe.2012.03.015.
  • 51. H. Sun, X. Zhang, and Z. Bai, “Synthesis and characterization of nano-sized YAG:Ce,Sm spherical phosphors”, J. Rare Earths, 31, 3, 231-234 (2013 ).
  • 52. E.M. Loiko, L. Lipińska, J.Cz. Dobrowolski, and A. Rzepka,“Studies on sol-gel processes accompanying formation of the yttrium aluminum garnet nanocrystals”, Materiały Elektroniczne Т. 34, 3/4 (2006) http://rcin.org.pl
  • 53. V. Schiopu, A. Matei, A. Dinescu, M. Danila, and I. Cemica, “Ce, Gd codoped YAG nanopowder for white light emitting device”, J. Nanosci. Nanotechnol. 12, 8836-8840 (2012).
  • 54. A. Lukowiak, R.J. Wiglusz, M. Maczka, P. Głuchowski, and W. Strek, “IR and Raman spectroscopy study of YAG nanoceramics”, Chem. Phys. Lett. 494, 279-283 (2010) doi: 10.1016/j.cplett.2010.06.033.
  • 55. A. Sahraneshin, S. Takami, K. Minami, D. Hojo, T. Arita, and T. Adschiri, “Synthesis and morphology control of surface functionalized nanoscale yttrium aluminum garnet particles via supercritical hydrothermal method”, Prog. Cryst. Growth. Ch. Mat. 58, 43-50 (2012) doi: 10.1016/j.pcrysgrow.2011.10.004.
  • 56. M. Zarzecka-Napierala and K. Haberko, “Synthesis and characterization of yttrium aluminium garnet (YAG) powders” Process. Appl. Ceram. 1, 69-74 (2007).
  • 57. G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method”, J.Cryst. Growth 279, 357-362 (2005) doi: 10.1016/j .jcry sgro.2005.01.072.
  • 58. M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, and V. Huch, “Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods”, J. Mater. Chem. 9, 3069-3079 (1999).
  • 59. R. Choudhary, К. Laishram, and R.K. Gupta, “Rapid synthesis of Nd:YAG nanopowder by microwave flash combustion”, Mar. Sci-Poland 27, 1025-1031 (2009).
  • 60. J.A. Jeong, K. Park, D.H. Lee, H.G. Kim, and Y.Y. Kim, “The Characteristics of YAG:Ce phosphor powder prepared using a NO3⁻ - Malonic Acid-NH4NO3-NH3F⋅H2O system”, Bull. Korean Chem. Soc. 33, 1141-146 (2012) http://dx.doi.org/10.5012/bkcs.2012.33.4.1141.
  • 61. G. He, G. Liu, S. Guo, Z. Yang, and J. Li, “Crystallization of Y3Al5O12:Ce3+ glass microspheres prepared by flame-spraying synthesis”, J Mater Sci: Mater Electron 26, 72-76 (2015) DOI 10.1007/s10854-014-2365-5.
  • 62. K. Zhang, W. Hu, Y. Wu, and H. Liu, “Influence of processing techniques on the properties of YAG:Ce nanophosphor”, Ceram. Int. 35, 719-723 (2009).
  • 63. H.M.H. Fadlalla and C.C. Tang, “YAG:Ce3+ nano-sized particles prepared by precipitation technique”, Mat. Chem. Phys. 114, 99-102 (2009).
  • 64. Y.S. Cho, Y.D. Huh, C.R. Park, and Y.R. Do, “Preparation with laser ablation and photoluminescence of Y3Al5O12:Ce nanophosphors”, Electron. Mater. Lett. 10, 461-465 (2014) DOI: 10.1007/s13391-014-4024-7.
  • 65. W. Peng, S. Jun, T. Hua, L. Qi-Fei, and W. Da-Jian, “Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air”, Optoel. Lett. 8, 0201-0204 (2012).
  • 66. http://abulafia.mt.ic.ac.uk/shannon/ptable.php.
  • 67. http://www.knowledgedoor.com/.
  • 68. S. Mukherjee, V. Sudarsan, R.K. Vatsa, and A.K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+ and Tb3+) doped YAG:Ce nano-phosphors”, J. Lumin. 129, 69-72 (2009) doi: 10.1016/j.jlumin.2008.08.003.
  • 69. F. Huang, L. Dong, Z. Fua, H. Wanga, W. Wanga, and Y. Wang, “Study of co-excited green emission of Tb3+, Ce3+ and Gd3+ in yttrium aluminum garnet”, J. Ceram. Process. Res. 10, 807-811 (2009).
  • 70. В. Huang, Y. Ma, S. Qian, D. Zou, G. Zheng, and Z. Dai, “Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors”, Opt. Mat. 36, 1561-1565 (2014) http://dx.doi.Org/10.1016/j.optmat.2014.04.025.
  • 71. L. Mancica, K. Marinkovica, B.A. Marinkovicb, M. Dramicaninc, and O. Milosevica, “YAG:Ce3+ nanostructured particles obtainedvia spray pyrolysis of polymeric precursor solution”, J. Ear. Ceram. Soc. 30, 577-582 (2010) doi: 10.1016/j.jeurceramsoc.2009.05.037
  • 72. www.jeol.com.
  • 73. L. Seijo, B. Zarandiaran,“4f and 5d levels of Ce3+ in D2 eightfold oxygen coordination”, Opt. Mater. 35, 1932 (2013).
  • 74. K. Li, С and Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors”, Optik 123, 621-623 (2012) doi: 10.1016/j.ijleo.2011.06.005.
  • 75. http://www.phosphor-technology.com/products/crt.htm, PTL Grade: QMK58/N-C1, QMK58/F-C1, MPK58/S-C1, QMPK65/N-C1.
  • 76. http://www.phosphortech.com.
  • 77. J.D. Furman, G. Gundiah, K. Page, N. Pizarro, and A.K. Cheetham, “Local structure and time-resolved photoluminescence of emulsion prepared YAG nanoparticles”, Chem. Phys. Lett. 465, 67-72 (2008) doi:10.1016/j.cplett.2008.09. 045.
  • 78. D.N. Chung, D.N. Hieu, T.T. Thao, V.V. Truong, and N.N. Dinh, “Synthesis and characterization of Ce-doped Y3Al5O12(YAG:Ce) nanopowders used for solid-state lighting”, J. Nanomat. Hindawi Publishing Corporation, 1-7 (2014) http://dx.doi.org/10.1155/2014/571920.
  • 79. http://www.osram-os.com.
  • 80. H. Yang, D.K. Lee, and Y.S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics”, Mat. Chem. Phys. 114, 665-669 (2009) doi: 10.1016/j.matchemphys.2(X)8.10.019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-021a71fb-779a-4e11-931f-20138be01757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.