PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pre-formed martensite quenching plus inverted multi‑step heat treatment on medium-carbon alloy steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A pre-formed martensitic quenching plus inverted multi-step austempering process is performed on a medium-carbon alloy steel: after austenitization, the specimen is cooled to 175 °C below the martensite start temperature (Ms), then raised to the first austempering step at 220 °C for 5 h, followed by the second step at 300 °C and held for 3 h. The conventional inverted multi-step austempering process and the one-step austempering process are carried out to form a contrast test. Through pre-formed martensitic quenching plus an inverted multi-step austempering process, the martensite/austenite (M/A) and bainitic ferrite in the microstructure are refined. The total time used for heat treatment is reduced markedly due to accelerating bainitic ferrite formation. This study provides theoretical support for the process design of ultra-fine bainitic steel.
Rocznik
Strony
art. no. e99, 2023
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
  • Key Laboratory of Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
autor
  • College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
  • Key Laboratory of Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
autor
  • College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
  • Key Laboratory of Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
  • College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
  • Key Laboratory of Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
Bibliografia
  • 1. Yokota T, Garcıa Mateo C, Bhadeshia HKDH. Formation of nanostructured steels by phase transformation. Scr Mater. 2004;51:767-70. https://doi.org/10.1016/j.scriptamat.2004.06.006.
  • 2. Caballero FG, Garcia-Mateo C, Miller MK. Design of novel bainitic steels: moving from ultra fine to nanoscale structures. JOM. 2014;66:747-55. https://doi.org/10.1007/s11837-014-0908-0.
  • 3. Pashangeh S, Somani MC, Ghasemi Banadkouki SS, Karimi Zarchi HR, Kaikkonen P, Porter DA. On the decomposition of austenite in a high-silicon medium-carbon steel during quenching and isothermal holding above and below the Ms temperature. Mater Charact. 2020;162: 110224. https://doi.org/10. 1016/j.matchar.2020.110224.
  • 4. Kozłowska A, Grajcar A, Janik A, Radwański K, Krupp U, Matus K, Morawiec M. Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels. Arch Civ Mech Eng. 2021;21:133. https://doi.org/10.1007/s43452-021-00284-6.
  • 5. Ackermann M, Resiak B, Buessler P, Michaut B, Bleck W. Effect of molybdenum and cooling regime on microstructural heterogeneity in bainitic steel wires. Steel Res Int. 2020;91:1900663. https://doi.org/10.1002/srin.201900663.
  • 6. Huda N, Midawi ARH, Gianetto J, Lazor R, Gerlich AP. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels. Mater Sci Eng A. 2016;662:481-91. https://doi.org/10.1016/j.msea.2016.03.095.
  • 7. Navarro-López A, Hidalgo J, Sietsma J, Santofimia MJ. Influence of the prior athermal martensite on the mechanical response of advanced bainitic steel. Mater Sci Eng A. 2018;735:343-53. https://doi.org/10.1016/j.msea.2018.08.047.
  • 8. Navarro-López A, Hidalgo J, Sietsma J, Santofimia MJ. Unravelling the mechanical behaviour of advanced multiphase steels isothermally obtained below M. Mater Des. 2020;188: 108484. https://doi.org/10.1016/j.matdes.2020.108484.
  • 9. Samanta S, Biswas P, Giri S, Singh SB, Kundu S. Formation of bainite below the M temperature: Kinetics and crystallography. Acta Mater. 2016;105:390-403. https://doi.org/10.1016/j.actam at.2015.12.027.
  • 10. Papadimitriou G, Fourlaris G. A TEM investigation of the stepped bainite reaction in silicon steels. Mater Sci. 1997. https://doi.org/10.1051/jp4:1997520.
  • 11. Long XY, Zhang FC, Kang J, Lv B, Shi XB. Low-temperature bainite in low-carbon steel. Mater Sci Eng A. 2014;594:344-51. https://doi.org/10.1016/j.msea.2013.11.089.
  • 12. Long XY, Kang J, Lv B, Zhang FC. Carbide-free bainite in medium carbon steel. Mater Des. 2014;64:237-45. https://doi. org/10.1016/j.matdes.2014.07.055.
  • 13. Soliman M, Mostafa H, El-Sabbagh AS, Palkowski H. Low temperature bainite in steel with 0.26 wt% C. Mater Sci Eng A. 2010;527:7706-13. https://doi.org/10.1016/j.msea.2010.08.037.
  • 14. Li J, Liu F, Wang S, Li J, Liu Y, Meng Q. Effect of two-step bainite treatment on the morphology and texture of retained austenite and mechanical properties of austenitizing pretreated transformation-induced plasticity steel. Mater Sci Eng A. 2020;771: 138567. https://doi.org/10.1016/j.msea.2019.138567.
  • 15. Duong VT, Song YY, Park K, Bhadeshia HKDH, Suh D. Austenite in transformation-induced plasticity steel subjected to multiple isothermal heat treatments. Metall Mater Trans A. 2014;45:4201-9. https://doi.org/10.1007/s11661-014-2405-z.
  • 16. Gao G, Guo H, Gui X, Tan Z, Bai B. Inverted multi-step bainitic austempering process routes: enhanced strength and ductility. Mater Sci Eng A. 2018;736:298-305. https://doi.org/10.1016/j.msea.2018.08.091.
  • 17. Yang Z, Chu C, Jiang F, Qin Y, Long X, Wang S, Chen D, Zhang F. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater Sci Eng A. 2019;748:16-20. https://doi.org/10.1016/j.msea.2019.01.061.
  • 18. Tian J, Wang W, Xu G, Wang X, Zhou M, Zurob H. Microstructure and properties of a low carbon bainitic steel produced by conventional and inverted two-step austempering processes. Met Mater Int. 2022. https://doi.org/10.1007/s12540-022-01316-3.
  • 19. Sun D, Zhao H, You L, Long X, Yang Z, Li Y, Liu F, Zhang F. Effects of first-step controlling on ultra-fine bainitic steel produced by two-step austempering process. Mater Sci Eng A. 2022;845: 143212. https://doi.org/10.1016/j.msea.2022.143212.
  • 20. García-Mateo C, Caballero FG, Bhadeshia HKDH. Superbainita. Una nueva microestructura bainítica de alta resistencia. Rev de Metal. 2005;41:186-93. https://doi.org/10.3989/revmetalm.2005.v41.i3.204.
  • 21. Qian L, Li Z, Wang T, Li D, Zhang F, Meng J. Roles of preformed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel. J Mater Res Technol. 2022;96:69-84. https://doi. org/10.1016/j.jmst.2021.05.002.
  • 22. H KDHB. Bainite in steels: theory and practice, 3rd edn. CRC Press; 2015.
  • 23. Zhang F, Yang Z. Retained austenite in bainitic steel. Qinhuangdao: Yanshan University Press; 2019.
  • 24. Zhao L, Qian L, Zhou Q, Li D, Wang T, Jia Z, Zhang F, Meng J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater Des. 2019;183: 108123. https://doi.org/10.1016/j.matdes.2019.108123.
  • 25. Lu X, Yang Z, Qian D, Lan J, Hua L. Effect of martensite prequenching on bainite transformation kinetics, martensite/bainite duplex microstructures, mechanical properties and retained austenite stability of GCr15 bearing steel. J Mater Res Technol. 2021;15:2429-38. https://doi.org/10.1016/j.jmrt.2021.09.070.
  • 26. Momeni A, Dehghani K. Effect of hot working on secondary phase formation in 2205 duplex stainless steel. J Mater Sci Technol. 2010;26:851-7. https://doi.org/10.1016/S1005-0302(10) 60136-3.
  • 27. Rafei M, Mirzadeh H, Malekan M. Micro-mechanisms and precipitation kinetics of delta (δ) phase in Inconel 718 superalloy during aging. J Alloys Compd. 2019;795:207-12. https://doi.org/ 10.1016/j.jallcom.2019.05.001.
  • 28. Rafei M, Mirzadeh H, Malekan M. Precipitation kinetics of γ″ phase and its mechanism in a Nb-bearing nickel-based superalloy during aging. Vacuum. 2020;178: 109456. https://doi.org/10. 1016/j.vacuum.2020.109456.
  • 29. Carta M, Colacino E, Delogu F, Porcheddu A. Kinetics of mechanochemical transformations. Phys Chem Chem Phys. 2020;22:14489-502. https://doi.org/10.1039/D0CP01658F.
  • 30. Mondal J, Das K, Das S. Isothermal transformation kinetics, microstructure and mechanical properties of a carbide free bainitic steel. Mater Charact. 2021;177: 111166. https://doi.org/10. 1016/j.matchar.2021.111166.
  • 31. Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels. Acta Mater. 2018;145:154-64. https://doi.org/10.1016/j.actamat.2017.11.036.
  • 32. Skowronek A, Morawiec M, Ruiz-Jimenez V, Garcia-Mateo C, Grajcar A. Physical simulation and dilatometric study of double-step heat treatment of medium-Mn steel. Arch Civ Mech Eng. 2020;20:136. https://doi.org/10.1007/s43452-020-00144-9.
  • 33. Varshney A, Sangal S, Pramanick AK, Mondal K. On the extent of transformation of austenite to bainitic ferrite and carbide during austempering of high Si steel for prolonged duration and its effect on mechanical properties. Mater Sci Eng A. 2020;793: 139764. https://doi.org/10.1016/j.msea.2020.139764.
  • 34. Mohseni P, Solberg JK, Karlsen M, Akselsen OM, Østby E. Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel. Mater Sci Technol. 2014;28:1261-8. https://doi.org/10.1179/1743284712Y.0000000056.
  • 35. Lan L, Qiu C, Zhao D, Gao X, Du L. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel. Mater Sci Eng A. 2011;529:192-200. https://doi.org/10.1016/j.msea.2011.09.017.
  • 36. Xie C, Liu Z, He X, Wang X, Qiao S. Effect of martensite-austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel. Mater Charact. 2020;161: 110139. https://doi.org/10.1016/j.matchar.2020.110139.
  • 37. Bobyr SV. Statistical model of impurity atoms diffusion in the crystal lattice of metals and its application for calculating the diffusion coeficients of hydrogen and carbon atoms in iron. Phys Solid State. 2021;63:420-4. https://doi.org/10.1134/S106378342 1030033.
  • 38. Sun D, Liu C, Long X, Zhao X, Li Y, Lv B, Zhang F, Yang Z. Effect of introduced vanadium carbide at the bay region on bainite transformation, microstructure and mechanical properties of high-carbon and high-silicon steel. Mater Sci Eng A. 2021;811: 141055. https://doi.org/10.1016/j.msea.2021.141055.
  • 39. Chu C, Qin Y, Li X, Yang Z, Zhang F, Guo C, Long X, You L. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel. Materials. 2019;12:166. https://doi.org/10.3390/ma12010166.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0215db7b-41f1-46f3-9b93-9f3d2d480455
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.