PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wytwarzanie i charakteryzowanie membran do przemysłowego rozdzielania mieszanin gazowych oraz modelowanie wybranych procesów prowadzonych z ich udziałem

Autorzy
Identyfikatory
Warianty tytułu
EN
Manufacturing and characterization of membranes for industrial gas separation and modeling of selected processes conducted with such membranes
Języki publikacji
PL
Abstrakty
PL
Monografia jest poświęcona membranowemu rozdzielaniu mieszanin gazowych. Podsumowuje prace badawcze autora związane z wytwarzaniem nowych polimerowych membran nieporowatych do realizacji przemysłowych procesów rozdzielania mieszanin gazowych. Zawiera również wyniki prac autora związane z modelowaniem matematycznym wybranych procesów prowadzonych z udziałem takich membran. Autor dokonał krytycznego przeglądu literatury związanej z procesami membranowego rozdzielania mieszanin gazowych i wskazał na istotną rolę inżynierii chemicznej i procesowej w opisie tych procesów. Praca przedstawia wyniki badań podstawowych i rezultaty prac rozwojowych, prowadzące autora do opracowania technologii powtarzalnego wytwarzania nieporowatych membran o zadanych właściwościach i mogących znaleźć bezpośrednie zastosowanie w procesach przemysłowych. W monografii przedstawiono wyniki badań prowadzonych z wykorzystaniem membran własnych, zarówno podczas badań z udziałem czystych gazów, czyli mających na celu wyznaczenie podstawowych właściwości permeacyjnych membran, jak i badań z udziałem mieszanin gazów. Wyniki badań doświadczalnych nad rozdzielaniem mieszanin prowadzonych w module membranowym z trzema króćcami zostały następnie porównane z wynikami numerycznymi uzyskanymi przy pomocy własnego modelu matematycznego. Uzyskano bardzo dobrą zgodność wyników doświadczalnych i modelowych. Autor zaproponował również nowy model matematyczny membranowego procesu rozdzielania mieszanin gazów, prowadzonego w obecności gazu nośnego odbierającego permeat w module membranowym z czterema króćcami. Model ten wyróżnia się spośród znanych w literaturze modeli matematycznych tym, że uwzględnia przekazywanie części energii, jaką posiada strumień gazu płynący konkretną przestrzenią modułu membranowego, strumieniowi gazu przenikającemu przez membranę i wnikającemu do tej przestrzeni. Praca przedstawia sformułowanie modelu i jego interpretację numeryczną.
EN
The monograph is devoted to membrane gas separation. It summarizes the Author's research on the manufacturing of new nonporous polymeric membranes for industrial gas mixtures separation. It also includes the Author's results related to the mathematical modeling of selected membrane gas separation processes that use such membranes. The Author has made a critical review of the literature related to the membrane gas separation processes and pointed to the important role of chemical and process engineering in the description of these processes. The monograph presents the results of basic research and development works, which have led the Author to develop the technology of reproducible production of nonporous membranes that have given, properties and that can be directly used in industrial processes. The monograph presents the results of research conducted using the Author's own membranes, both during research involving pure gases, whose aim has been to determine the membrane basic permeation properties, as well as research involving gas mixtures. The experimental results of the gas mixtures separation carried out in the membrane module with three ports have been compared with the numerical results obtained using the Author's own mathematical model of membrane gas separation process in the membrane module with three ports. A very good agreement between the experimental results and the model ones has been achieved. The Author has also proposed a new mathematical model of membrane gas separation process carried out in the presence of a sweep gas receiving the permeate in the membrane module with four ports. This model is distinguished from other models known in the literature as it takes into account the energy transfer from the gas stream flowing along a specific channel of the membrane module to the gas stream passing through the membrane and penetrating this channel. The monograph presents the formulation of this mathematical model and its numerical interpretation.
Rocznik
Strony
3--133
Opis fizyczny
Bibliogr. 98 poz.., rys., tab., wykr.
Twórcy
autor
  • Wydział Inżynierii Chemicznej i Procesowej
Bibliografia
  • 1. Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M. (2010). Performance studies of mixed matrix membranes for gas separation: a review. Separation and Purification Technology, 75(3), 229-242.
  • 2. Baker R.W. (2012). Membrane Technology and Applications. Wiley.
  • 3. Barrer R.M. (1984). Diffusivities in glassy polymers for the dual mode sorption model. Journal of Membrane Science, 18, 25-35.
  • 4. Bernardo P., Clarizia G. (2013). 30 Years of Membrane Technology for Gas Separation, Chemical Engineering Transactions, 32, 1999-2004.
  • 5. Bernardo P., Drioli E., Golemme G. (2009). Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 48(10), 4638-4663.
  • 6. Bertelle S., Gupta T., Roizard D., Vallieres C., Favre E. (2006). Study of polymer-carbon mixed matrix membranes for CO2 separation from flue gas. Desalination, 199, 401-402.
  • 7. Bhave R. (Ed.). (1991). Inorganic membranes: synthesis, characteristic and application. Van Nostrand Reinhold.
  • 8. Bondar V.I., Freeman B.D., Pinnau I. (2000). Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science Part B: Polymer Physics, 38(15), 2051-2062.
  • 9. Botuna R.H.B., Checchetti A., Chidichimo G., Drioli E. (1997). Permeation through a heterogeneous membrane: the effect of the dispersed phase. Journal of Membrane Science, 128(2), 141-149.
  • 10. Brinker C.J., Frye G.C., Hurd A.J., Ashley C.S. (1991). Fundamentals of sol-gel dip coating. Thin Solid Films, 201(1), 97-108.
  • 11. Campaua D.M., Ubal S., Giavedoni M.D., Saita F.A. (2016). The influence of surfactants on dip coating of fibers: numerical analysis. Industrial & Engineering Chemistry Research, 55(19), 5770-5779.
  • 12. Cheng G., Graessley W.W., Melnichenko Y.B. (2009). Polymer dimensions in good solvents: crossover from semidilute to concentrated solutions. Physical Review Letters, 102(15), 157801.
  • 13. Ciborowski J. (1973). Inżynieria procesowa. WNT.
  • 14. Chung T.S., Jiang L.Y, Li Y., Kulprathipanja S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507.
  • 15. Coker D.T., Allen T., Freeman B.D., Fleming G.K. (1999). Nonisothermal model for gas separation hollow-fiber membranes. AIChE Journal, 45(7), 1451-1468.
  • 16. Coker D.T., Freeman B.D., Fleming G.K. (1998). Modeling multicomponent gas separation using hollow-fiber membrane contactors. AIChE Journal, 44(6), 1289-1302.
  • 17. Davis R.A. (2002). Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chemical Engineering & Technology, 25(7), 717-722.
  • 18. Davis R.L., Jayaraman S., Chaikin P.M., Register R.A. (2014). Creating Controlled Thickness Gradients in Polymer Thin Films via Flowcoating. Langmuir, 30(19), 5637-5644.
  • 19. De Gennes P.G., Brochard-Wyart F., Quere D. (2013). Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media.
  • 20. Derjaguin B.V: (1943). On the thickness of a layer of liquid remaining on the walls of vessels after their emptying, and the theory of the application of photoemulsion after coating on the cine film. Acta Physicochimica USSR 20, 349-352.
  • 21. Drioli E., Barbieri G. (Ed.). (2011). Membrane engineering for the treatment of gases. Royal Society Chemistry.
  • 22. Favre E. (2016). Membrane gas separations: materials and process engineering challenges for new applications. Book of abstracts, Permea Conference.
  • 23. Fong H., Chun I., Reneker D.H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
  • 24. Franz J., Schiebahn S., Zhao L., Riensche E., Scherer V., Stolteu D. (2013). Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture. International Journal of Greenhouse Gas Control, 13, 180-190.
  • 25. Freeman B.D. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2), 375-380.
  • 26. Gabbanelli S., Drazer G., Kopli J. (2005). Lattice Boltzmann method for non-Newtonian (power-law) fluids. Physical Review E, 72(4), 046312.
  • 27. Galina H. (1998). Fizykochemia polimerów. Oficyna Wydawnicza Politechniki Rzeszowskiej.
  • 28. Giglia S., Bikson B., Perrin J.E., Donatelli A.A. (1991). Mathematical and experimental analysis of gas separation by hollow fiber membranes. Industrial & Engineering Chemistry Research, 30(6), 1239-1248.
  • 29. Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81(3), 243-264.
  • 30. Haider A., Gupta K.C., Kang I.K. (2014). Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. BioMed Research International, 2014, 1-11.
  • 31. Hall D.B., Underhill P., Torkelson J.M. (1998). Spin coating of thin and ultrathin polymer films. Polymer Engineering & Science, 38(12), 2039-2045.
  • 32. Hilal N., Ismail A.F., Wright C.J. (Ed.) (2015). Membrane fabrication. CRC Press.
  • 33. Hilal N., Khayet M., Wright C.J. (2012). Membrane modifications. Technology and applications. CRC Press.
  • 34. Hoffman E.J. (2003). Membrane Separations Technology. Single-Stage, Multistage, and Differential Permeation. GPP.
  • 35. Janocha A., Lubas J., Szwast M., Jakubowicz P., Holewa J., Bęben D. (2014). Doradztwo procesowe w realizacji projektu wzbogacania w hel gazu ziemnego z wykorzystaniem modułów membranowych- Polskie Górnictwo Naftowe i Gazownictwo.
  • 36. Kaldis S.P., Kapantaidakis G. C., Sakellaropoulos G.P. (2000). Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases. Journal of Membrane Science, 173(1), 61-71.
  • 37. Keny F. G. (2007). Industrial gas handbook: gas separation and purification. CRC Press.
  • 38. Khan A.L., Klaysom C., Gahlaut A., Vankelecom I.F. (2013). Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 436, 145-153.
  • 39. Kim J.H., Koros W.J., Paul D.R. (2006). Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties. Polymer, 47(9), 3094-3103.
  • 40. Kim S., Chen L., Johnson J.K., Marand E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. Journal of Membrane Science, 294(1), 147-158.
  • 41. Koros W.J., Mahajan R. (2000). Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science, 175(2), 181-196.
  • 42. Kovvali A.S., Vemury S., Admassu W. (1994). Modeling of multicomponent countercurrent gas permeators. Industrial & Engineering Chemistry Research, 33( 4 ), 896-903.
  • 43. Kovvali A.S., Vemury S., Krovvidi K.R., Khan A.A. (1992). Models and analyses of membrane gas permeators. Journal of Membrane Science, 73(1), 1-23.
  • 44. Kundu P.K., Chakm A., Feng X. (2013). Modelling of multicomponent gas separation with asymmetric hollow fibre membranes-methane enrichment from biogas. The Canadian Journal of Chemical Engineering, 91(6), 1092-1102.
  • 45. Landau L., Levich B. (1942). Dragging of a liquid by a moving plate. Acta Physicochim. USSR, 17, 42-54.
  • 46. Jau C.H., Li P., Li F., Chung T.S., Paul D.R. (2013). Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 38(5), 740-766.
  • 47. Loeb S., Sourirajan S. (1962). Seawater demineralization by means of an osmotic membrane. Advances in Chemistry Series, 3 8, 117-132.
  • 48. Makaruk A., Harasek M. (2009). Numerical algorithm for modelling multicomponent multipermeator systems. Journal of Membrane Science, 344(1), 258-265.
  • 49. Marriott J., Sorensen E. (2003). A general approach to modelling membrane modules. Chemical Engineering Science, 58(22), 4975-4990.
  • 50. Merkel T.C., Freeman B.D., Spontak R.J., He Z., Pinnau I., Meakin P., Hill A.J. (2002). Ultrapermeable, reverse-selective nanocomposite membranes. Science, 296(5567), 519-522.
  • 51. Mourgues A., Sanchez J. (2005). Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science, 252(1), 133-144.
  • 52. Murad Chowdhury MH., Feng X., Douglas P., Croiset E. (2005). A new numerical approach for a detailed multicomponent gas separation membrane model and AspenPlus simulation. Chemical Engineering & Technology, 28(7), 773-782.
  • 53. Nafisi V., Hagg M.B. (2014). Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 6(18), 15643-15652.
  • 54. Nik O.G., Chen X.Y., Kaliaguine S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for C02/CH4 separation. Journal of Membrane Science, 413, 48-61.
  • 55. Norrman K. , Ghanbari-Siahkali A., Larsen N.B. (2005). 6 Studies of spin-coated polymer films. Annual Reports Section "C" (Physical Chemistry), 101, 174-201.
  • 56. Osada Y., Nakagawa T. (Ed.) (1992). Membrane Science and Technology. Marcel Dekker, Inc.
  • 57. Pal R. (2008). Permeation models for mixed matrix membranes. Journal of Colloid and Interface Science, 317(1), 191-198.
  • 58. Pan C.Y. (1986). Gas separation by high-flux, asymmetric hollow-fiber membrane. AIChE Journal, 32(12), 2020-2027.
  • 59. Pandey P., Chauhan R.S. (2001). Membranes for gas separation. Progress in Polymer Science, 26(6), 853-893.
  • 60. Pinnau I., Freeman B.D. (Ed.) (2000). Membrane formation and modification. ACS.
  • 61. Potreck J., Nijmeijer K., Kosinski T., Wessling M. (2009). Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074. Journal of Membrane Science, 338(1), 11-16.
  • 62. Rautenbach R., Dahm W. (1986). Simplified calculation of gas-permeation hollow-fiber modules for the separation of binary mixtures. Journal of Membrane Science, 28(3), 319-327.
  • 63. Robeson L.M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62, 165-185.
  • 64. Robeson L.M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1), 390-400.
  • 65. Rowe B.W., Freeman B.D., Paul D.R. (2009). Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer, 50(23), 5565-5575.
  • 66. Scholz M, Harlacher T., Melin T., Wessling M (2012). Modeling gas permeation by linking nonideal effects. Industrial & Engineering Chemistry Research, 52(3), 1079-1088.
  • 67. Shangguan Y. (2011). Intrinsic Properties of Poly (Ether-B-Amide)(Pebax® 1074) for Gas Permeation and Pervaporation. Master Thesis, Univeristy of Waterloo.
  • 68. Smith S.W., Hall C.K., Freeman B.D., Rautenbach R. (1996). Corrections for analytical gas permeation models for separation of binary gas mixtures using membrane modules. Journal of Membrane Science, 118(2), 289-294.
  • 69.Snoeijer J.H., Ziegler J., Andreotti B., Fermigier M., Eggers J. (2008). Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Physical Review Letters, 100(24), 244502.
  • 70. Spiers R.P., Subaram C.V., Wilkinson W.L. (1974). Free coating of a Newtonian liquid onto a vertical surface. Chem. Eng. Sci, 29, 389-396.
  • 71. Stolten D., Emonts B. (Ed.) (2016). Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 2 Volume Set. Wiley.
  • 72. Strathmann H. (2011). Introduction to membrane science and technology. Wiley-VCH.
  • 73. Szwast M. (2012). Membrany polimerowe do rozdzielania gazów. Przemysł Chemiczny, 91/7, 1356--1361.
  • 74. Szwast M. (2014). Raport z grantu badawczo-rozwojowego NCBiR pt. „Opracowanie technologii i techniki wytwarzania membran do separacji gazowej", NR14 0050 10, realizowanego w latach 2010-2013.
  • 75. Szwast M. (2015a). Nowe membrany do osuszania gazu ziemnego. Przemysł Chemiczny, 94, 2213-2217.
  • 76. Szwast M. (2015b). Use of membranes in the implementation of the “Power to gas" concept. Copernican Letters, 6, 51-58.
  • 77. Szwast M., Fabianowski W., Gradoń L., Piątkiewicz W. (2008). Koncepcja wytwarzania membran kapilarnych oraz metody oceny ich jakości. Przemysł Chemiczny, 87, 206-209.
  • 78. Szwast M., Piątkiewicz W. (2006). Structure modification of olypropylene membranes. International Conference Biomaterials in Regenerative Medicine, Vienna 2006.
  • 79. Szwast M., Salwocki J., Piątkiewicz W. (2006). Badania kapilarnych membran polipropyle nowych stosowanych w procesach ochrony środowiska. Inżynieria i Aparatura Chemiczna, (5s), 130-132.
  • 80. Szwast M., Sobczak A. (2014). Wzbogacanie gazu ziemnego - model numeryczny membranowego rozdziału składników gazowych. Inżynieria i Aparatura Chemiczna, (4), 302-303.
  • 81. Szwast M., Szwast Z. (2015a). A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel. Chemical and Process Engineering, 36(2), 151-169.
  • 82. Szwast M., Szwast Z. (2015b). Numerical Verification of Mathematical Model of Membrane Gas Separation Process with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel. Proceedings of Euromembrane Conference, Aachen, 6-10.09.2015 .
  • 83. Szwast M., Szwast Z. (2016). Numerical interpretation of the mathematical model of gases- separation processes with participation of nonporous polymer membranes. Ogólnopolska Konferencja Inżynierii Chemicznej i Procesowej, Spala, 5-9.09.2016.
  • 84. Szwast M., Zalewski M., Nikpour R., Sobczak A. (2014). Pozyskiwanie helu z gazu ziemnego za pomocą technik membranowych. Inżynieria i Aparatura Chemiczna, (4), 304-305.
  • 85. Tessendorf S., Gani R., Michelsen M.L. (1999). Modeling, simulation and optimization of membrane- based gas separation systems. Chemical Engineering Science, 54(7), 943-955.
  • 86. Theron S.A., Zussman E., Yarin A.L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030.
  • 87. Thundyil M.J., Koros W.J. (1997). Mathematical modeling of gas separation permeators - for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules. Journal of Membrane Science, 125(2), 275-291.
  • 88. Vu D.Q., Koros W.J., Miller S.J. (2003). Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 211(2), 311-334.
  • 89. Wang R., Liu S.L., Lin T.T., Chung T.S. (2002). Characterization of hollow fiber membranes in a permeator using binary gas mixtures. Chemical Engineering Science, 57(6), 967-976.
  • 90. Weissberg S.G., Simha R., Rothman S. (1951). Viscosity of dilute and moderately concentrated polymer solutions. J. Res. Natl. Bur. Stand, 47(4), 298-314.
  • 91. Wessling M., Lopez M.L., Strathmann H. (2001). Accelerated plasticization of thin-film composite membranes used in gas separation. Separation and Purification Technology, 24(1), 223-233.
  • 92. Wijmans J.G., Baker R.W. (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1), 1-21.
  • 93. Wu J., Ling L., Xie J., Ma G., Wang B. (2014). Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chemical Physics Letters, 591, 227-232.
  • 94. Xu J., Agrawal R. (1996). Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing. Journal of Membrane Science, 112(2), 115-128.
  • 95. Yampolskii Y., Pinnau I., Freeman B.D. (Ed.) (2006). Materials science of membranes for gas and vapor separation. Wiley.
  • 96. Yang R.T. (2013). Gas separation by adsorption processes. Butterworth-Heinemann.
  • 97. Zarzycki R., Chacuk A. (1993). Absorption: Fundamentals and Applications. Pergamon Press.
  • 98. Zornoza B., Martinez-Joaristi A., Serra-Crespo P., Tellez C., Coronas J., Gascon J., Kapteijn F. (2011). Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of C02 from CH4 at elevated pressures. Chemical Communications, 47(33), 9522-9524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0214cf41-284b-47b7-9006-ce029a85ff1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.