PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Powłoki cynkowe otrzymywane metodą bezkontaktowo-gazową na elementach gwintowanych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Zinc coatings applied on threaded bolts by non-contact gas method
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań nad wykorzystaniem metody bezkontaktowo-gazowej do wytwarzania powłok cynkowych na śrubach klasy 10.9. Powłoki wytwarzano w temperaturze 500°C i czasie wygrzewania 4 h w mieszaninie proszkowej zawierającej proszek cyn- ku (69%), wypełniacz Al2O3 (30%) oraz aktywator NH4Cl (1%). Ujawniono mikrostrukturę powłok (SEM) oraz określono skład chemiczny w mikroobszarach z wykorzystaniem mikroanalizy rentgenowskiej (EDS). Powłoki wytworzone metodą bezkontaktowo-gazową mają budowę warstwową. Przy podłożu powstaje zwarta warstwa fazy Γ1 (Fe11Zn40), którą pokrywa warstwa fazy δ1 (FeZn10) oraz na zewnątrz warstwa fazy ζ (FeZn13). Badania korozyjne w obojętnej mgle solnej potwierdziły bardzo dobrą odporność korozyjną powłok.
EN
The article presents the results of research study on the use of the non-contact gas method to apply zinc coatings on high-strength grade 10.9 bolts. The coatings were created at 500°C and heat soaking time of 4 hours in a powder mixture containing 69% of zinc powder, 30% of Al2O3 as a filler and 1% of NH4Cl as an activator. Coating microstructure (SEM) was exposed and chemical composition in microsites using X-ray microanalysis (EDS) was defined. Coatings obtained using non-contact gas method had a layered structure. At the substrate, a compact layer of phase Γ1 (Fe11Zn40) was created, which was covered with a layer of phase δ1 (FeZn10) and the outer phase ζ (FeZn13). Corrosion testing in neutral salt spray confirmed very good corrosion resistance of coatings.
Rocznik
Tom
Strony
146--151
Opis fizyczny
Bibliogr., 37poz., fot., tab.
Bibliografia
  • [1] Lokaj A., Klajmonova K. 2017. “Comparison of Behaviour of Laterally Loaded Round and Squared Timber Bolted Joints”. Frattura ed Integrità Strutturale 11 (39): 56–61.
  • [2] Kania H., Mendala J., Kozuba J., Saternus M. 2020. “Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing – A Review”. Materials 13 (18) 4168: 1–24.
  • [3] Mendala J. 2015. “The Possibility of the LME Phenomenon in Elements Subjected to Metallization in Zn Bath with Bi Addition”. Solid State Phenomena 226: 167–172.
  • [4] Mendala J., Liberski P. 2014. “Liquid Metal Embrittlement of Steel with a Coating Obtained by Batch Hot Dip Method in a Zn + 2% Sn Bath”. Solid State Phenomena 212: 107–110.
  • [5] Kania H., Saternus M., Kudláček J. 2020. “Structural Aspects of Decreasing the Corrosion Resistance of Zinc Coating Obtained in Baths with Al, Ni, and Pb Additives”. Materials 13 (2): 385.
  • [6] Kania H., Saternus M., Kudláček J., Svoboda J. 2020. “Microstructure Characterization and Corrosion Resistance of Zinc Coating Obtained in a Zn-AlNiBi Galvanizing Bath”. Coatings 10 (8): 758.
  • [7] Kania H., Saternus M., Kudláček J. 2020. “Impact of Bi and Sn on Microstructure and Corrosion Resistance of Zinc Coatings Obtained in Zn-AlNi Bath”. Materials 13 (17): 3788.
  • [8] High Temperature Galvanizing. 1980. New York: International Lead Zinc Research Organization: 35–36.
  • [9] Liberski P., Podolski P., Kania H., Gierek A., Mendala J. 2003. “Corrosion Resistance of Zinc Coatings Obtained in High-Temperature Baths”. Material Science 39 (5): 652–657.
  • [10] Kwiatkowski L. 2004. „Cynk i ochrona przed korozją”. Ochrona przed Korozją 10: 256–257.
  • [11] Porter F. 1991. Zinc Handbook: Properties Processing and Use in Design. New York: Marcel Dekker.
  • [12] Chatterjee B. 2004. “Sherardizing”. Metal Finishing 102 (3): 40–46.
  • [13] Smith C.A. 1980. “Sherardizing: Part 2”. Anti-Corrosion Methods and Materials 27 (6): 10–12.
  • [14] Jiang J.H., Ma A.B., Fan X.D., Gong M.Z., Zhang L.Y. 2010. “Sherardizing and Characteristic of Zinc Protective Coating on High-Strength Steel Bridge Cable Wires”. Advanced Materials Research 97: 1368–1372.
  • [15] Kania H., Sipa J. 2018. “Thermal Diffusion Zinc Coating Technology with Reactive Atmosphere Recirculation. Part 1: General Description of Technology and Structure of Coatings”. Ochrona przed Korozją 11: 338–345.
  • [16] Kania H., Sipa J. 2019. “Microstructure Characterization and Corrosion Resistance of Zinc Coating Obtained on High-Strength Grade 10.9 Bolts Using a New Thermal Diffusion Process”. Materials 12 (9): 1400.
  • [17] Kuklik V., Kudlácek J. 2016. Hot-Dip Galvanizing of Steel Structures. Amsterdam–Tokyo: Butterworth-Heinemann.
  • [18] Kubaschewski O. 1982. Iron Binary Phase Diagrams. Berlin: Springer-Verlag.
  • [19] Wołczyński W., Guzik E., Janczak-Rusch J., Kopyciński D., Golczewski J., Hyuck M.L., Kloch J. 2006. “Morphological Characteristics of Multi-Layer/ Substrate Systems”. Materials Characterization 56 (4–5): 274–280.
  • [20] Schulz W.D., Thiele M. 2008. Feuerverzinken von Stückgut. Bad Saulgau: Eugen Leuze Verlag.
  • [21] Pokorny P., Kolisko J., Balik L., Novak P. 2015. “Description of Structure of Fe-Zn Intermetallic Compounds Present in Hot-Dip Galvanized Coatings on Steel”. Metalurgija 54 (4): 707–710.
  • [22] Liberski P. 2013. Antykorozyjne metalowe powłoki zanurzeniowe. Gliwice: Politechnika Śląska.
  • [23] Konstantinov V.M., Buloichyk I.A. 2015. “Some Aspects of Sherardizing Implementation during Anticorrosion Protection of Heat-Treated Metal Parts”. IOP Conference Series: Materials Science and Engineering 71.
  • [24] Liu L., Yu S. 2017. “A Comparative Study on Zn and Zn-Y Coatings on 42CrMo Steel by Pack Cementation Process”. International Journal of Electrochemical Science 12 (10): 9575–9587.
  • [25] Wortelen D., Frieling R., Bracht H., Graf W., Natrup F. 2015. “Impact of Zinc Halide Addition on the Growth of Zinc-Rich Layers Generated by Sherardizing”. Surface Coating Technology 263: 66–77.
  • [26] Chaliampalias D., Papazoglou M., Tsipas S., Pavlidou E., Skolianos S., Stergioudis G., Vourlias G. 2010. “The Effect of Al and Cr Additions on PackCementationZincCoatings”.AppliedSurfaceScience256(11):3618– 3623.
  • [27] Chaliampalias D., Pistofidis N., Vourlias G. 2008. “Effect of Temperature and Zinc Concentration on Zinc Coatings Deposited with Pack Cementation”. Surface Engineering 24 (4): 259–263.
  • [28] Beguin P., Bosschaerts M., Pankert R., Gilles M. 2000. “Galveco, a Solution for Galvanizing Reactive Steel”. Proceedings of 19th International Galvanizing Conference. Berlin: EGGA. Paper 4: 1, paper 3: 1–8.
  • [29] Reumont G., Perrot P. 1997. “Fundamental Study of Lead Additions in Indus- trial Zinc”. Proceedings of 18th International Galvanizing Conference. Birmingham: EGGA.
  • [30] Massalski T.B. 1990. Binary Alloy Phase Diagrams. Ohio: ASM International.
  • [31] Malakhov D.V. 2000. “Thermodynamic Assessment of the Bi-Zn System”. Calphad 24 (1): 1–14.
  • [32] Fries S.G., Lukas H.L. 1998. “System Sn–Zn”. Thermochemical Database for Light Metal Alloys, vol. 2. Luxembourg: Office for Official Publications of the European Communities.
  • [33] Ohtani H., Miyashita M., Ishida K. 1999. “Thermodynamic Study of Phase Equilibria in the Sn-Ag-Zn System”. Journal of the Japan Institute of Metals and Materials 63 (6): 685–694.
  • [34] Pankert R., Dhaussy D., Beguin P. 2003. “Three Years Industrial Experience with the Galveco Alloy”. Proceedings of 20th International Galvanizing Conference “Intergalva 2003”. Berlin: EGGA.
  • [35] Pistofidis N., Vourlias G., Konidaris S., Pavlidou E., Stergiou A., Stergioudis G. 2007. „The Effect of Bismuth on the Structure of Zinc Hot-Dip Galvanized Coating”. Materials Letters 61 (4–5): 994–997.
  • [36] Avettand-Fènoël M.N., Goodwin F.E., Foct J. 2006. “Effect of Tin Added to the Zinc Bath on the Formation and the Microstructure of Hot-Dip Galvanized Coatings”. International Journal of Materials Research 97 (8): 1183–1192.
  • [37] Lide D.R. (ed.). 2005. CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press LLC.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02115217-3148-4d6e-862a-fc1a6430d115
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.