PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Shortened Time Horizon Approach for Optimization with Differential-Algebraic Constraints

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
In this work a new numerical optimization scheme based on a shortened time horizon approach was designed. The shortened time horizon strategy has never been presented or tested numerically. The new methodology was applied for a single objective optimization task subject to a system of nonlinear differential-algebraic constraints, which can take a form of differential-algebraic equations (DAEs). Moreover, it was assumed, that an application of a cooperated multiple shooting with direct solution method, like direct shooting approach, does not enable us to solve the DAE system, even on relatively small subintervals. Therefore, the new solution procedure is based on two main parts: i) designing of an alternative differentialalgebraic constraints, ii) parametrization of a new constraints system by the multiple shooting approach and further simulation of the alternative system independently on small subintervals. Then, the simulation interval can be modified by the shortened time horizon approach. The presented algorithm was used to solve a highly nonlinear optimization task of a fed-batch reactor operation.
Rocznik
Tom
Strony
211--215
Opis fizyczny
Bibliogr. 11 poz., wz., wykr.
Twórcy
autor
  • Department of Control Systems and Mechatronics Wrocław University of Science and Technology Wrocław, Poland
Bibliografia
  • 1. J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM, Philadelphia, 2010, https://doi.org/10.1137/1.9780898718577.
  • 2. B. Beykal, M. Onel, O. Onel, E.N. Pistikopoulos, A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities, AIChE Journal, vol. 66, 2020, article no. e16657, https://doi.org/10.1002/aic.16657.
  • 3. B. Burnak, E.N. Pistikopoulos, Integrated process design, scheduling, and model predictive control of batch processes with closed-loop implementation, AIChE Journal, vol. 66, 2020, article no. e16981, https://doi.org/10.1002/aic.16981.
  • 4. A. Caspari, L. Lüken, P. Schäfer, Y. Vaupel, A. Mhamdi, L.T. Biegler, A. Mitsos, Dynamic optimization with complementarity constraints: Smoothing for direct shooting, Computers and Chemical Engineering, vol. 139, 2020, article no. 106891, https://doi.org/10.1016/j.compchemeng.2020.106891.
  • 5. P. Dra̧g, A Direct Optimization Algorithm for Problems with Differential-Algebraic Constraints: Application to Heat and Mass Transfer, Applied Sciences, vol. 10, 2020, art. no. 9027, pp. 1-19, https://doi.org/10.3390/app10249027.
  • 6. P. Dra̧g, K. Styczeń, The new approach for dynamic optimization with variability constraints. In: S. Fidanova (ed.), Recent advances in computational optimization : results of the Workshop on Computational Optimization WCO 2017. Cham, Springer, 2019. pp. 35-46, https://doi.org/10.1007/978-3-319-99648-6 3.
  • 7. M.T. Kelley, R. Baldick, M. Baldea, A direct transcription-based multiple shooting formulation for dynamic optimization, Computers and Chemical Engineering, vol. 140, 2020, art. no. 106846, https://doi.org/10.1016/j.compchemeng.2020.106846.
  • 8. R. Luus, O. Rosen, Application of dynamic programming to final state constrained optimal control problems, Industrial & Engineering Chemistry Research, vol. 30, 1991, pp. 1525-1530.
  • 9. D. Pandelidis, M. Dra̧g, P. Dra̧g, W. Worek, S. Cetin, Comparative analysis between traditional and M-Cycle based cooling tower, International Journal of Heat and Mass Transfer, vol. 159, 2020, art. no. 120124, pp. 1-13, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120124.
  • 10. J. Nocedal, S. Wright, Numerical Optimization. Springer, New York, NY, 2006, https://doi.org/10.1007/978-0-387-40065-5.
  • 11. D.M. Yancy-Caballero, L.T. Biegler, R. Guirardello, Large-scale DAE-constrained optimization applied to a modified spouted bed reactor for ethylene production from methane, Computers and Chemical Engineering, vol. 113, 2018, pp 162-183, https://doi.org/10.1016/j.compchemeng.2018.03.017.
Uwagi
1. Track 1: Artificial Intelligence in Applications
2. Session: 14th International Workshop on Computational Optimization
3. Short Paper
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-020ba751-2191-416c-83cf-eb5ec9e5853b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.