PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Weighted Goal Programming model for Storage Space Allocation problem in a container terminal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Storage Space Allocation Problem (SSAP) is defined as the temporary assignment of unloading/loading containers to the storage blocks during a planning period with the aim of balancing the workload between the blocks. Despite the widespread literature on this topic, several previous studies neglected the practical and implementation aspect of their solutions. The aim of this paper is to formulate and solve the real-life SSAP at the Sfax seaport situated in Tunisia. A Weighted Goal Programming (WGP) based-methodology is proposed as a multi-objective resolution approach. In this proposed approach, three objectives have been accorded including: (i) the balance between the containers unloaded in the blocks, (ii) the balance between the containers unloaded and loaded simultaneously, and (iii) the minimization of the storage cost of the loading/unloading containers for each period. Experimental results show that the proposed approach provides good results and can be effective and practical for the studied Sfax seaport case study.
Rocznik
Strony
6--21
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., wzory
Twórcy
  • OLID Research Unit, University of Sfax, Road of Aeroport Km 0.5, Sfax, 3029, Tunisia
  • OLID Research Unit, University of Sfax, Road of Aeroport Km 0.5, Sfax, 3029, Tunisia
autor
  • OLID Research Unit, University of Sfax, Road of Aeroport Km 0.5, Sfax, 3029, Tunisia
Bibliografia
  • Bazzazi, M., Safaei, N., & Javadian, N. (2009). A genetic algorithm to solve the storage space allocation problem in a container terminal. Computers & Industrial Engineering, 56(1), 44. doi: 10.1016/j.cie.2008.03.012.
  • Chen, L., & Lu, Z. (2012). The storage location assignment problem for outbound containers in a maritime terminal. International Journal of Production Economics, 135(1), 73-80. doi: 10.1016/j.ijpe.2010.09.019.
  • Choirunnisa, S., Sarno, R., & Fauzan, A.C. (2018). Optimization of forecasted port container terminal performance using goal programming. In 2018 International Conference on Information and Communications Technology (ICOIACT), 332-336.
  • Covic, F. (2019). Literature Review on Container Handling in the Yard Area. in Container Handling in Automated Yard Blocks: An Integrative Approach Based on Time Information, F. Covic, Éd. Cham: Springer International Publishing, 47-72.
  • Dahlin, M.D., Alvisi, L., Ganesh, L., Silberstein, M., Wang, Y., Kapritsos, Mahajan, Kirubanandam, & Ren, Z. (2014). Robustness in a scalable block storage system. US20140143367A1. https://patentimages.storage.googleapis.com/37/bd/d7/1bb9f38f6bb0f9/US20140143367A1.pdf.
  • Galle, V., Barnhart, C., & Jaillet, P. (2018). Yard Crane Scheduling for container storage, retrieval, and relocation. European Journal of Operational Research, 271(1), 288-316. doi: 10.1016/j.ejor.2018.05.007.
  • Halim, K., Dkhil, H., Mchich, R., & Yassine, A. (2018). Storage yard management in container transshipment: Benchmarking methodology. In 2018 4th International Conference on Logistics Operations Management (GOL), 1-5.
  • Henesey, L. (2020). Multi-Agent Container Terminal Management. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00342.
  • Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore, B., Park, D., Zhang, Y., Stefanescu, A., & Rosu, G. (2018). KEVM: A Complete Formal Semantics of the Ethereum Virtual Machine. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). doi: 10.1109/csf.2018.00022.
  • Hu, W., Wang, H., & Min, Z. (2014). A storage allocation algorithm for outbound containers based on the outer-inner cellular automaton. Information Sciences, 281, 147-171. doi: 10.1016/j.ins.2014.05.022.
  • Hu, Z.H., Sheu, J.B., & Luo, J.X. (2016). Sequencing twin automated stacking cranes in a block at automated container terminal. Transportation Research Part C: Emerging Technologies, 69, 208-227. doi: 10.1016/j.trc.2016.06.004.
  • Huang, Z., Yu, H., Chu, X., & Peng, Z. (2017). A goal programming based model system for community energy plan. Energy, 134, 893-901. doi: 10.1016/j.energy.2017.06.057.
  • Imai, A., Nishimura, E., & Papadimitriou, S. (2001). The dynamic berth allocation problem for a container port. Transportation Research Part B: Methodological, 35(4), 401-417. doi: 10.1016/S0191-2615(99)00057-0.
  • Imai, A., Sasaki, K., Nishimura, E., & Papadimitriou, S. (2006). Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks. European Journal of Operational Research, 171(2), 373-389. doi: 10.1016/j.ejor.2004.07.066.
  • Jamalnia, A., & Soukhakian, M.A. (2009). A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Computers & Industrial Engineering, 56(4), 1474-1486. doi: 10.1016/j.cie.2008.09.010.
  • Jiang, X., Lee, L.H., Chew, E.P., Han, Y., & Tan, K.C. (2012). A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port. European journal of operational research, 221(1), 64-73.
  • Jiang, X.J., & Jin, J.G. (2017). A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards0 Transportation Research Part B: Methodological , 98, 62-75. doi: 10.1016/j.trb.2016.12.014.
  • Ku, D., & Arthanari, T.S. (2016). Container relocation problem with time windows for container departure. European Journal of Operational Research, 252(3), 1031-1039. doi: 10.1016/j.ejor.2016.01.055.
  • Lee, D.H., & Chen, J.H. (2010). An improved approach for quay crane scheduling with non-crossing constraints. Engineering Optimization, 42(1), 1-15.
  • Legato, P., & Mazza, R.M. (2001). Berth planning and resources optimisation at a container terminal via discrete event simulation. European Journal of Operational Research, 133(3), 537-547. doi: 10.1016/S0377-2217(00)00200-9.
  • Legato, P., & Monaco, M.F. (2004). Human resources management at a marine container terminal. European Journal of Operational Research, 156(3), 769-781. doi: 10.1016/S0377-2217(03)00134-6.
  • Luo, J., Wu, Y., & Mendes, A.B. (2016). Modelling of integrated vehicle scheduling and container storage problems in unloading process at an automated container terminal. Computers & Industrial Engineering, 94, 32-44. doi: 10.1016/j.cie.2016.01.010.
  • Maretto, L. (2020). A Decision Support System for the Storage Space Allocation Problem under the Effect of Disturbances: a Case of the Port of Arica (Chile). http://tesi.cab.unipd.it/64219/.
  • Martel, J.M., & Aouni, B. (1998). Diverse imprecise goal programming model formulations. Journal of Global Optimization, 12(2),127-138.
  • Mirzaee, H., Naderi, B., & Pasandideh, S.H.R. (2018). A preemptive fuzzy goal programming model for generalized supplier selection and order allocation with incremental discount. Computers & Industrial Engineering, 122, 292-302. doi: 10.1016/j.cie.2018.05.042.
  • Mokhtari, H., & Hasani, A. (2017). A multi-objective model for cleaner production-transportation planning in manufacturing plants via fuzzy goal programming. Journal of Manufacturing Systems, 44, 230-242. doi: 10.1016/j.jmsy.2017.06.002.
  • Oddoye, J.P., Jones, D.F., Tamiz, M., & Schmidt, P. (2009). Combining simulation and goal programming for healthcare planning in a medical assessment unit. European Journal of Operational Research, 193(1), 250-261. doi: 10.1016/j.ejor.2007.10.029.
  • Poux, X., & Aubert, P.M. (2018). Une Europe agroécologique en 2050 : une agriculture multifonctionnelle pour une alimentation saine. Enseignements d’une modélisation du système alimentaire européen, Iddri-AScA, Study N°09/18, Paris, France, 78. https://www.iddri.org/sites/default/files/PDF/Publications/Catalogue%20Iddri/Etude/201809-T0918-tyfa_0.pdf.
  • Rekik, I., Elkosantini, S., & Chabchoub, H. (2015). Container stacking problem: a literature review. CIE45 Proceedings, Metz / France. https://www.researchgate.net/profile/Sabeur_Elkosantini/publication/294799315_Container_stacking_problem_a_survey/links/58cc59674585157b6dac0cb4/Container-stacking-problem-a-survey.pdf.
  • Rekik, I., Elkosantini, S., & Chabchoub, H. (2018). A case based heuristic for container stacking in seaport terminals. Advanced Engineering Informatics, 38, 658-669. doi: 10.1016/j.aei.2018.08.016.
  • Romero, C. (1986). A survey of generalized goal programming (1970-1982). European Journal of Operational Research, 25(2), 183-191. doi: 10.1016/0377-2217(86)90084-6.
  • Sharif, O., & Huynh, N. (2013). Storage space allocation at marine container terminals using ant-based control. Expert Systems with Applications, 40(6), 2323-2330. doi: 10.1016/j.eswa.2012.10.032.
  • Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research-a classification and literature review. OR spectrum, 26(1), 3-49.
  • Tan, C., He, J., & Wang, Y. (2017). Storage yard management based on flexible yard template in container terminal. Advanced Engineering Informatics, 34, 101-113. doi: 10.1016/j.aei.2017.10.003.
  • Ting, C.J., & Wu, K.C. (2017). Optimizing container relocation operations at container yards with beam search. Transportation Research Part E: Logistics and Transportation Review, 103, 17-31. doi: 10.1016/j.tre.2017.04.010.
  • Vis, I.F.A., & de Koster, R. (2003). Transshipment of containers at a container terminal: An overview. European Journal of Operational Research, 147(1), 1-16. doi: 10.1016/S0377-2217(02)00293-X.
  • Woo, Y.J., & Kim, K.H. (2011). Estimating the space requirement for outbound container inventories in port container terminals. International Journal of Production Economics, 133(1), 293-301. doi: 10.1016/j.ijpe.2010.04.032.
  • Woo, Y.J., Song, J.H., & Kim, K.H. (2016). Pricing storage of outbound containers in container terminals. Flex Serv Manuf J, 28(4), 644-668. doi: 10.1007/s10696-016-9245-7.
  • Yan, W., Huang, Y., Chang, D., & He, J. (2011). An investigation into knowledge-based yard crane scheduling for container terminals. Advanced Engineering Informatics, 25(3), 462-471. doi: 10.1016/j.aei.2011.03.001.
  • Yang, X., Low, J.M.W., & Tang, L.C. (2011). Analysis of intermodal freight from China to Indian Ocean: A goal programming approach. Journal of Transport Geography, 19(4), 515-527. doi: 10.1016/j.jtrangeo.2010.05.007.
  • Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., & Koch, C.C. (2005). Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters, 87(9), 091904. doi: 10.1063/1.2034122.
  • Yue, D., You, F., & Snyder, S.W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56. doi: 10.1016/j.compchemeng.2013.11.016.
  • Zhang, C., Liu, J., Wan, Y., Murty, K.G., & Linn, R.J. (2003). Storage space allocation in container terminals. Transportation Research Part B: Methodological, 37(10), 883-903. doi: 10.1016/S0191-2615(02)00089-9.
  • Zhen, L. (2014). Container yard template planning under uncertain maritime market. Transportation Research Part E: Logistics and Transportation Review, 69, 199-217. https://doi.org/10.1016/j.tre.2014.06.011.
  • Zhuang, Z.Y., & Hocine, A. (2018). Meta goal programing approach for solving multi-criteria de Novo programing problem. European Journal of Operational Research, 265(1), 228-238. doi: 10.1016/j.ejor.2017.07.035.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02085dd1-8f82-47b3-9fde-e47b8a782692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.