PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The calculation of stress intensity factor steel of railway wheels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From an analysis of the dependence complex of carbon steel properties on structural parameters, it was found that for an isostructural state, the influence of austenite grain size on impact strength exceeds the dependence on carbon content. As a result of explaining correlation relationships between individual mechanical characteristics, to evaluate critical stress intensity factor, a relationship is proposed based on the use of impact strength. The proportionality coefficient in proposed dependence is determined by ratio of elongation to narrowing at tensile test.
Rocznik
Tom
Strony
187--193
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Dniprovsk National University of Railway Transport Named Academician V.Lazaryan, Lazaryan St.,2, Dnipro, Ukraine, 49010
  • Dniprovsk National University of Railway Transport Named Academician V.Lazaryan, Lazaryan St.,2, Dnipro, Ukraine, 49010
  • Mechanical Engineering, Karabuk University, Karabük, Turkey
Bibliografia
  • 1. Babich V.K., Yu.P. Gul, I.E. Dolzhenkov. 1972. Strain hardening of steel. Moscow: Metallurgy.
  • 2. Boljshakov V.I., G.D. Sukhomlin, N.Eh. Pogrebnaya. 2001. Atlas struktur metallov I splavov. Dnepropetrovsk, Ukraine: Gaudeamus.
  • 3. Bujang A.H.I.A., M. Hrairi, M.S.I.S. Dawood. 2019. “Determination of stress intensity factor of actuated cracked aluminum plate using strain gages”. International Journal of Recent Technology and Engineering 7: 241-245.
  • 4. Celada-Casero C., C. Kwakernaak, J. Sietsma, M.J. Santofimia. 2019. “The influence of the austenite grain size on the micro structural development during quenching and partitioning processing of a low-carbon steel”. Materials & Design 178: 107847.
  • 5. En N.F. 2009 “European standard for Wheels – EN 12262 Product requirements”.
  • 6. Gubenko S., Y. Proidak, A. Kozlovsky, et. al. 2008. “Influence of nonmetallic inclusions on micro breaks formation in wheel steel and railway wheels”. Transport Problems 3: 77-81.
  • 7. Joshi. S., A.V. Bhosale. 2013. “Determination of Stress Intensity Factors using Finite Element Method”. Struct. Integr. Life 4: 1651-1658. 8. Knott J.F. 1973. Fundamentals of fracture mechanics. London: Butterworths.
  • 9. Koymatcik H., T. Tozlu, H. Cug, Y. Sun, H. Ahlatci. 2013. “Hardening of the head portions of the pearlitic rails by accelerated cooling”. JESTECH 16: 53-58.
  • 10. Masoum M., E. Anderson, A. Echeverri, A.P. Tschiptschin, H. Goldenstein. 2019. “Improvement of wear resistance in a pearlitic rail steel via quenching and partitioning processing”. Sci.Rep 9: 7454. DOI: 10.1038/s41598-019-43623-7.
  • 11. Pickering F.B. 1978. Physical metallurgy and the design of steels. Applied science publishers LTD. 12. Rolfe S.T., John M. Barsom, T. Stanley. 1999. Fracture and fatigue control in structures applications of fracture mechanics. 3. ed. West Conshohocken, Pa.: ASTM. ISBN: 0803120826.
  • 13. Rooke D.P., F.I. Baratta, D.J. Cartwright. 1981. “Simple methods of determining stress intensity factors”. Engineering Fracture Mechanics 14(2): 397-426.
  • 14. Šťastniak P., L. Smetanka, P. Drozdziel. 2019. “Computer aided simulation analysis for wear investigation of railway wheel running surface”. Diagnostyka 20(3): 63-68.
  • 15. Tasdemir B. 2015.”Determination of stress intensity factor using digital image correlation method”. Matter. 2: 20-24.
  • 16. Vasauskas V., Ž. Bazaras, V. Čapas. 2005. “Strength anisotropy of railway wheels under contact load”. Mechanika 51(1): 31-38.
  • 17. Veskovic S., Z. Dordevic, G. Stojic, J. Tepic, I. Tanackov. 2012. “Necessity and effects of dynamic systems for railway wheel defect detection”. Metalurgija 51(3): 333-336.
  • 18. Walther F., D. Eifler. 2004. “Fatigue behaviour of railway wheels at different temperatures”. Mater. Test. 46: 158-162. 19. Xu W., X. R.Wu, Y. Yu. 2017. “Weight function, stress intensity factor and crack opening displacement solutions to periodic collinear edge hole cracks”. Fatigue & Fracture of Engineering Materials & Structures 40: 2068-2079.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02062eeb-51a1-4244-a15a-e563217fd96a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.