PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Extensive Sheep Grazing on the Biochemical Status of Soils of the Grassland Habitat of Natura 2000

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abandonment of the use of agricultural areas, especially low-production grass communities, and the related secondary succession of trees and shrubs, affects the transformation of the soil environment. The work focused on the impact of extensive sheep grazing on activity of dehydrogenases (DhA) and neutral phosphatase (PhA) and the resources of total organic carbon (TOC) and available phosphorus (Pav) in the soils of meadow habitats in eastern Poland. These habitats are located within the ecological network Natura 2000: PLH060018 Stawska Góra, PLH060035 Zachodniowołyńska Dolina Bugu, PLH060010 Kąty and the Nature Reserve "Kózki" (PLB140001 Dolina Dolnego Bugu and PLH140011 Ostoja Nadbużańska). Soil material was collected for three years, twice each year: before and after the grazing. In the soils of all the studied habitats, a beneficial effect of extensive sheep grazing on soil enzymatic activity and TOC and Pav content was noticed. A particular marked improvement was observed in the biochemical status of the soil in the study area where sheep grazing was continued since 2008. This confirms the hypothesis that free grazing of livestock has a positive impact on biodiversity and the condition of the soil environment of Natura 2000 habitats.
Rocznik
Strony
256--268
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20-069 Lublin, Poland
  • Commune Office in Zakrzew, Zakrzew 26, 23-155 Zakrzew, Poland
  • Department of Animal Breeding and Agricultural Advisory, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • 1. Ajorlo M., Abdullah R., Hanif A.H. Mohd., Halim R. Abd., Yusoff K. Mohd. 2011. Impacts of livestock grazing on selected soil chemical properties in intensively managed pastures of Peninsular Malaysia. Pertanika Journal of Tropical Agricultural Science 34, 1, 109–121.
  • 2. Ano A., Ubochi C. 2010. Neutralization of soil acidity by animal manures: Mechanism of reaction. Afr. J. Biotechnol. 6, 364–368.
  • 3. Barańska K., Żmihorski M., Pluciński P. 2013. Report from the project Conservation and restoration of xerothermic grasslands in Poland - theory and practice LIFE08 NAT/PL/513. Naturalists’ Club Publisher, Świebodzin.
  • 4. Bielińska E.J., Futa B., Chmielewski S., Patkowski K., Gruszecki T. 2017. Quantification of biodiversity related to the active protection of grassland habitats in the eastern Lublin region of Poland based on the activity of soil enzymes. Pol. J. Soil Sci. 50, 55–62.
  • 5. Błońska E., Lasota J., Zwydak M. 2017. The relationship between soil properties, enzyme activity and land use. Forest Research Papers 78(1), 39–44.
  • 6. Brewer K.M., Gaudin A.C.M. 2020. Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid crop-lands. Soil Biology and Biochemistry 107936, 149.
  • 7. Bueis T., Turrión M.B., Bravo F., Pando V., Muscolo A. 2018. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: a basis for establishing sustainable forest management strategies. Annals of Forest Science 75, 34.
  • 8. Bünemann, E.K.: Assessment of gross and net mineralization rates of soil organic phosphorus - A review, Soil Biol. Biochem., 89, 82–98.
  • 9. Cao J., Yan R., Chen X., Wang X., Yu Q., Zhang Y., Ning C., L., Hang Y.Z, Xin X. 2019. Grazing affects the ecological stoichiometry of the Hou plant-soil-microbe system on the Hulunber Steppe, China. Sustainability, 11, 5226.
  • 10. Carpinelli S., Fonseca A.F., Neto P.H.W., Dias S.H.B., Pontes L.S. 2020. Spatial and temporal distribution of cattle dung and nutrient cycling in integrated crop-livestock systems. Agronomy 10, 672.
  • 11. Chabuz W., Kulik M., Sawicka-Zugaj W., Żółkiewski P., Warda M., Pluta M., Lipiec A., Bochniak A., Zdulski J. 2019. Impact of the type of use of permanent grasslands areas in mountainous regions on the floristic diversity of habitats and animal welfare. Global Ecology and Conservation, 19, e00629.
  • 12. Chen L., Wang K., Baoyin T. 2021. Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C: N: P) in a semi-arid grassland of North China. Catena. 206, 105507.
  • 13. De Deyn G.B., Kooistra L. 2021 The role of soils in habitat creation, maintenance and restoration. Phil. Trans. R. Soc. B 376: 20200170.
  • 14. Díaz de Otálora X., Epelde L., Arranz J., Garbisu C., Ruiz R., Mandaluniz N. 2021. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecological Indicators 125(7), 1470–160.
  • 15. Environment 2021. Statistics Poland, Warsaw 2021. ISSN 0867-3217.
  • 16. European Commission, Directorate-General for Environment, Farming for Natura 2000: guidance on how to support Natura 2000 farming systems to achieve conservation objectives, based on Member States good practice experiences, Publications Office, 2019.
  • 17. Futa B., Tajchman K., Steiner-Bogdaszewska Ż., Drozd L., Gruszecki T.M. 2021. Preliminary results of effect of rotational grazing of farmed red deer (Cervus elaphus) on the biochemical status of soil. Agronomy, 11, 558.
  • 18. Futa B., Patkowski K., Bielińska E.J., Gruszecki T.M., Pluta M., Kulik M., Chmielewski S. 2016. Sheep and horse grazing in a large-scale protection area and its positive impact on chemical and biological soil properties. Pol. J. Soil Sci. 49, 111–122.
  • 19. Galindo, F.S., Delate, K., Heins, B., Phillips, H., Smith, A., Pagliari, P.H. 2020. Cropping System and Rotational Grazing Effects on Soil Fertility and Enzymatic Activity in an Integrated Organic Crop-Livestock System. Agronomy, 10, 803.
  • 20. Gruszecki T., Bielińska E.J., Chmielewski T.J., Warda M., Wróblewska A., Bojar W., Chmielewski S., Grzywaczewski G., Lipiec A., Jankuszew A., Kitowski I., 2011. The use of extensive sheep grazing as a method of active protection within Natura 2000. Teka Commission of Protection and Formation of Natural Environment, OL PAN, 8, 5–16.
  • 21. Hao Y.; He Z. 2019. Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis. PLoS ONE, 14, e0215223.
  • 22. Hermoso V., Morán-Ordóñez A., Canessa S., Brotons L. 2019. Realising the potential of Natura 2000 to achieve EU conservation goals as 2020 approaches. Sci Rep 9, 16087.
  • 23. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Report No. 106; FAO: Rome, Italy, 2015.
  • 24. Johan P.D., Ahmed, O.H., Omar L.; Hasbullah N.A. 2021. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy, 11, 2010.
  • 25. Kulik M. 2014. Changes of biodiversity and species composition of Molinia meadow depending on use method. Pol. J. Environ. Stud., 23(3), 773–782.
  • 26. Kulik M., Warda M., Gawryluk A., Bochniak A., Patkowski K., Lipiec A., Gruszecki TM., Pluta M., Bielińska EJ., Futa B. 2020. Grazing of native live-stock breeds as a method of grassland protection in Roztocze National Park, Eastern Poland. Journal of Ecological Engineering, 21(3) 61–69.
  • 27. Kulik M., Warda M., Król A., Oleszek M., Lipiec A., Gruszecki T., Bojar W. 2017. Total protein and macroelement content in selected psammophilous grassland species under free-range sheep grazing in Kozki Nature Reserve. Journal of Elementology, 22(1), 183–193.
  • 28. Kulik M., Warda M., Leśniewska P., 2013. Monitoring the diversity of psammophilous grassland communities in the Kózki Nature Reserve under grazing and non–grazing conditions. Journal of Water and Land Development, 19, 59–67.
  • 29. Kulik M., Patkowski K., Warda M., Lipiec A., Bojar W., Gruszecki T.M. 2019. Assessment of biomass nutritive value in the context of animal welfare and conservation of selected Natura 2000 habitats (4030, 6120 and 6210) in eastern Poland. Global Ecology and Convervation, 19, e00675
  • 30. Lasota J., Błońska E., Piaszczyk W. 2021. State of soil enzymatic activity in relationship to some chemical properties of Brunic Arenosols. Soil Science Annual. 72,140641.
  • 31. Lemanowicz J. 2015. Phosphorus content and distribution and the activity of phosphatases in Arenosols in a forest affected by long-term exposure to the effects of the Anwil S.A. nitrogen works in Włocławek. Forest Research Papers, 76(3): 250–255
  • 32. Lemanowicz J. 2018. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental science and pollution research international, 25(33), 33773–33782.
  • 33. Li G., Zhang Z., Shi L., Zhou Y., Yang M., Cao Y., Wu S., Lei G. 2018. Effects of Different Grazing Intensities on Soil C, N, and P in an Alpine Meadow on the Qinghai-Tibetan Plateau, China. Int J Environ Res Public Health. 15, 2584.
  • 34. Li W., Huang H.Z., Zhang Z.N., Wu G. L. 2011. Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. Journal of Soil Science and Plant Nutrition 11(4), 27–39.
  • 35. Lipiec A., Gruszecki T.M., Warda M., Bojar W., Junkuszew A., Kulik M., Greguła-Kania M. 2015. Nutritional well-being of sheep under free-range grazing system on natural dry grasslands. Med. Weter. 71 (1), 41–45
  • 36. Liu J., Li F., Liu J., Wang S., Liu H., Ding Y., Ji L. 2023. Grazing promotes soil phosphorus cycling by enhancing soil microbial functional genes for phosphorus transformation in plant rhizosphere in a semi-arid natural grassland. Geoderma 430, 116303.
  • 37. Mencel J., Futa B., Mocek-Płóciniak A., Mendyk Ł., Piernik A., Kaczmarek T., Glina B. 2022. Interplay between Selected Chemical and Biochemical Soil Properties in the Humus Horizons of Grassland Soils with Low Water Table Depth. Sustainability 14, 16890.
  • 38. Möckel S. 2022. Natura 2000-sites: Legal requirements for agricultural and forestry land-use. Nature Conservation 48: 161184.
  • 39. Nannipieri P., Giagnoni L., Landi L., Renella G. 2011. Role of phosphatase enzymes in soil. Soil Biology 26, 215–243.
  • 40. Nannipieri P., Trasar-Cepeda C., Dick R.P. 2018. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54, 11–19.
  • 41. OECD 2023. Protected areas. (Accessed on 08 October 2023).
  • 42. Oppermann R., Beaufoy G., Jones G. (ed.) 2012. High nature value farming in Europe: 35 European countries - experiences and perspectives. Verlag Regionalkultur, Ubstadt-Weiher, Germany.
  • 43. Qin Y., Niu D., Kang J., Zhou Y., Li X. 2015. Effects of livestock exclusion on soil physical and biochemical properties of a desert rangeland. Polish Journal of Environmental Studies 24(6), 2587–2595.
  • 44. Rothwell S.A., Doody D.G., Johnston C., Forber K.J., Cencic O., Rechberger H., Withers P.J.A. 2020. Phosphorus stocks and flows in an intensive livestock dominated food system. Resources, conservation, and recycling, 163, 105065.
  • 45. Rysiak A., Chabuz W., Sawicks-Zugaj W., Zdulski J., Grzywaczewski G., Kulik M. 2021. Comparative impcats of grazing and mowing on the floristics of grasslands in the buffer zone of Polesie National Park, eastern Poland, Global Ecology and Conservation, 27, e01612.
  • 46. Schinner F., Ohlinger R., Kandeler E., Margesin R. 1995. Methods in Soil Biology; Springer: Berlin/ Heidelberg, Germany.
  • 47. Song L.Y., Gong J.R., Zhang Z.H., Zhang W.Y., Zhang S.Q., Dong J.J., Dong X.D., Hu Y.X., Liu Y.Y. 2023. Changes in plant phosphorus demand and supply relationships in response to different grazing intensities affect the soil organic carbon stock of a temperate steppe. Sci. Total Environ., 876, 1–11.
  • 48. Steinshamn H., Grøva L., Adler S.A., Brunberg E., Lande U.S. 2018. Effects of grazing abandoned grassland on herbage production and utilization, and sheep preference and performance Front. Environ. Sci., 6, 1–12.
  • 49. Teutscherová N., Vázquez E., Sotelo M., Villegas D., Velásquez N., Baquero D., M. Pulleman, J. Arango. 2021. Intensive short-duration rotational grazing is associated with improved soil quality within one year after establishment in Colombia Applied Soil Ecology. Article 103835, 159.
  • 50. Toivonen M., Herzon I., Helenius J. 2013. Environmental fallows as a new policy tool to safeguard farmland biodiversity in Finland. Biological Conservation, 159, 355–366.
  • 51. Vilela M. de O., Gates R.S., Souza C.F., Teles Junior C.G.S., Sousa F.C. 2020. Nitrogen transformation stages into ammonia in broiler production: sources, deposition, transformation, and emission into the environment. DYNA, 87(214), 221–228.
  • 52. Wade C., Sonnier G., Boughton E.H. 2022. Does Grazing Affect Soil Carbon in Subtropical Humid Seminatural Grasslands? Rangeland Ecology and Management. 80, 10-17.
  • 53. Warda M., Kulik M., Gruszecki T. 2016. The impact of intensive sheep grazing in the spring on the vegetation of xerothermic grasslands in Stawska Góra nature reserve. Ecological Questions. 23, 43–50.
  • 54. Weiss N., Zucchi H., Hochkirch A., 2013. The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodiversity and Conservation, 22(10), 2167–2178.
  • 55. https://natura2000.eea.europa.eu
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02061327-9867-4443-b5d9-a73443300f26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.