PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-dimensional computational fluid dynamics modelling of a proton exchange membrane fuel cell with a serpentine micro-channel design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to demonstrate the feasibility of using a Computational Fluid Dynamics tool for the design of a novel Proton Exchange Membrane Fuel Cell and to investigate the performance of serpentine micro-channel flow fields. A three-dimensional steady state model consisting of momentum, heat, species and charge conservation equations in combination with electrochemical equations has been developed. The design of the PEMFC involved electrolyte membrane, anode and cathode catalyst layers, anode and cathode gas diffusion layers, two collectors and serpentine micro-channels of air and fuel. The distributions of mass fraction, temperature, pressure drop and gas flows through the PEMFC were studied. The current density was predicted in a wide scope of voltage. The current density – voltage curve and power characteristic of the analysed PEMFC design were obtained. A validation study showed that the developed model was able to assess the PEMFC performance.
Rocznik
Strony
143--–154
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. ANSYS Inc., 2015. ANSYS Fluent Fuel Cell Modules Manual.
  • 2. Ferreira R.B., Falcão D.S., Oliveira V.B., Pinto A.M.R.F., 2017. 1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell. Appl. Energy, 203, 474–495. DOI: 10.1016/j.apenergy.2017.06.048.
  • 3. Ju H., Wang C-Y., 2004. Experimental validation of a PEM fuel cell model by current distribution data. J. Electrochem Soc., 151 (11), A1954–A1960. DOI: 10.1149/1.1805523.
  • 4. Kahveci E.E., Taymaz I., 2018. Assessment of single-serpentine PEM fuel cell model developed by computational fluid dynamics. Fuel, 217, 51–58. DOI: 10.1016/j.fuel.2017.12.073.
  • 5. Kunusch C., Puleston P., Mayosky M., 2012. Sliding-mode control of PEM fuel cells. Advances in Industrial Control. Springer-Verlag, London, 13–33. DOI: 10.1007/978-1-4471-2431-3.
  • 6. Lafmejani S.S., Olesen A.C., Kær S.K., 2017. VOF modelling of gaseliquid flow in PEM water electrolysis cel micro-channels. Int. J. Hydrogen Energy, 42, 16333–16344. DOI: 10.1016/j.ijhydene.2017.05.079.
  • 7. Li H., Knights S., Shi Z., Van Zee J.W., Zhang J., 2010. Proton Exchange Membrane Fuel Cells: Contamination and mitigation strategies. CRC Press, Boca Raton, 20–339.
  • 8. Quan P., Zhou B., Sobiesiak A., Liu Z., 2005. Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. J. Power Sources, 152, 131–145. DOI: 10.1016/j.jpowsour.2005.02.075.
  • 9. Springer T. E., Zawodzinski T.A., Gottesfeld S., 1991. Polymer electrolyte fuel cell model. J. Electrochem Soc., 138, 2334–2342. DOI: 10.1149/1.2085971.
  • 10. Taner T., 2018. Energy and exergy analyze of PEM fuel cell: a case study of modeling and simulations. Energy, 143, 284–294. DOI: 10.1016/j.energy.2017.10.102.
  • 11. Vega-Leal A.P., Palomo F.R., Barragán F., García C., Brey J.J., 2007. Design of control systems for portable PEM fuel cells. J. Power Sources, 169, 194–197. DOI: 10.1016/j.jpowsour.2007.01.055.
  • 12. Wang X-D., Duan Y-Y., Yan W-M., Lee D-J., Su A., Chi P-H., 2009. Channel aspect ratio effect for serpentine proton exchange membrane fuel cell: Role of sub-rib convection. J. Power Sources, 193, 684–690. DOI: 10.1016/ j.jpowsour.2009.04.019.
  • 13. Yue L., Wang Y., Wang S., 2017. New design of a cathode flow-field with a sub-channel to improve the polimer electrolyte membrane fuel cell performance. J. Power Sources, 344, 32–38. DOI: 10.1016/j.jpowsour.2017.01.075.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0200867d-d2e9-415a-b75d-652a35f6f363
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.