PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on Microstructural Evolution and Wear Behaviour of AlNi intermetallic Reinforced AA6061 alloy in T6 condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present investigation Ni particles were added in varying weight fractions (0.5, 1.0 and 1.5%) to AA6061 alloy during stir casting. To prepare Al-Ni intermetallic reinforced Aluminium Metal Matrix Composites (Al MMCs), as-cast samples were subjected to T6 treatment (Solutionization at 550°C followed by ageing at 2,4,6,8 and 10 hours). Base alloy was also subjected to T6 treatment for comparison purpose. Hardness of the samples were obtained using Vickers hardness test. Samples in the peak aged (T6) condition were subjected to metallographic examination. Influence of Ni particles on the hardness and grain refinement was investigated. X-ray Diffraction analysis of the Ni added samples revealed the presence of Al-Ni intermetallic phase formation in the peak aged (T6) Condition. Scanning Electron Microscope - Energy Dispersive X-Ray Spectroscopy analysis of composites in the peak aged (T6) condition were carried out to study the formation of the Al-Ni intermetallic phase. Effect of Al-Ni intermetallic phase on wear and friction behavior of the composite samples were studied and compared with that of the base alloy in the peak aged (T6) condition.
Twórcy
autor
  • Metallurgical Engineering, PSG College of Technology, India-641004
  • Metallurgical Engineering, PSG College of Technology, India-641004
  • Production Engineering, PSG College of Technology, India-641004
autor
  • Metallurgical Engineering, PSG College of Technology, India-641004
  • Mechanical Engineering, Coimbatore Institute of Technology, India-641004
  • Metallurgical Engineering, PSG College of Technology, India-641004
Bibliografia
  • [1] M. Balakrishnan, I. Dinaharan, K. Kalaiselvan, R. Palanivel, Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrix composites: microstructure and tensile properties, J. Mater. Res. Technol. 9, 4356-4367 (2020). DOI: https://doi.org/110.101610.1016/j.jmrt.2020.02.060
  • [2] T.P.D. Rajan, R.M. Pillai, B.C. Pai, Functionally graded Al-Al 3Ni in situ intermetallic composites: Fabrication and microstructural characterization, Journal of Alloys and Compounds 453, L4-L7 (2008). DOI: https://doi.org/10.1016/j.jallcom.2006.11.181
  • [3] K.S. Mohammad, H.T. Naeem, Effect of milling parameters on the synthesis of Al-Ni intermetallic compound prepared by mechanical alloying. ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ 116, 908-917(2015). DOI: https://doi.org/10.7868/S0015323015090077
  • [4] S. Deevi, V. Sikka, Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics 4, 357-375 (1996). DOI: https://doi.org/10.1016/0966-9795(95)00056-9
  • [5] S. Miura, C. Liu, Effects of aluminum concentration and compact thickness on reaction synthesis of Ni3Al2NiAl alloys, Intermetallics 2, 297-313 (1994). DOI: https://doi.org/10.1016/0966-9795(94)90016-7
  • [6] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science 46, 1-184 (2001). DOI: https://doi.org/10.1016/s0079-6425(99)00010-9
  • [7] H.T. Naeem, K.S. Mohammed, K.R. Ahmad, Azmi Rahmat, The influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties of Al-Zn-Mg-Cu Alloys, Advances in Materials Science and Engineering, Article id 686474, 2014. DOI: https://doi.org/10.1155/2014/686474
  • [8] A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, M. Pekguleryuz, Phase formation in as-solidified and heat treated Al-Si-Cu-Mg-Ni alloys: thermodynamic assessment and experimental investigation for alloy design, Journal of Alloys and Compounds 551, 596-606 (2013). DOI: https://doi.org/10.1016/j.jallcom.2012.10.182
  • [9] R.S. Mishra, Z.Y. Ma, I. Charit, and Friction stir processing: a novel technique for fabrication of surface composite, Mater. Sci. Eng. A. 341, 307-310 (2003). DOI: https://doi.org/10.1016/s0921-5093(02)00199-5
  • [10] Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi, Fullerene/A5083 composites fabricated by material flow during friction stir processing, Compos. Part A 38, 2097-2101 (2007). DOI: https://doi.org/10.1016/j.compositesa.2007.07.004
  • [11] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing on the microstructure and hardness of an aluminum-zinc-magnesium-copper alloy with nickel additives, Mater. Sci. Eng. A 419, 344-348 (2006). DOI: https://doi.org/10.7868/s0015323015100058
  • [12] M. Dixit, J.W. Newkir, R.S. Mishra, Properties of friction stir-processed Al 1100-NiTi composite, Scripta Mater. 56, 541-544 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2006.11.006
  • [13] W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, X.Y. Liu, Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization, Transactions of Nonferrous Metals Society of China 21 (10), 2127-2133 (2011). DOI: https://doi.org/10.1016/s1003-6326(11)60984-9
  • [14] G.S. Peng, K.H. Chen, S.Y. Chen, H.C. Fang, Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy, Transactions of Nonferrous Metals Society of China 22 (4), 803-809 (2012). DOI: https://doi.org/10.1016/s1003-6326(11)61248-x
  • [15] S. Çam, V. Demir, D. Özyürek, Wear Behaviour of A356/TiAl3 in Situ Composites Produced by Mechanical Alloying, Metals. 6 (2), 34 (2016). DOI: https://doi.org/10.3390/met6020034
  • [16] J. Qian, J. Li, J. Xiong, F. Zhang, X. Lin, In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing, Materials Science and Engineering A 550, 279-285 (2012). DOI: https://doi.org/10.1016/j.msea.2012.04.070
  • [17] O.P. Gbenebor, M. Abdulwahab, O.S.I. Fayomi, Influence of inoculant addition and cooling medium on the mechanical properties of AA6063-type Al-Mg-Si alloy, Chalcogenide Letters 9 (5), 201-211 (2012).
  • [18] R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Macrosegregation in direct-chill casting of aluminium alloys, Progress in Materials Science 53 (3), 421-480 (2008). DOI: https://doi.org/10.1016/j.pmatsci.2007.10.001
  • [19] G. Liu, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Almatrix composites, Material Science & Engineering A 699, 185-193 (2017). DOI: https://doi.org/10.1016/j.msea.2017.05.084
  • [20] B.S.B. Reddy, K. Rajasekhar, M. Venu, J.J.S. Dilip, S. Das, K. Das, Mechanical activation assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al2O3) nanocomposite, Journal of Alloys and Compounds 465, 97-105 (2008). DOI: https://doi.org/10.1016/j.jallcom.2007.10.098
  • [21] A.R. Najarian, R. Emadi, M. Hamzeh, Fabrication of as-cast Al matrix composite reinforced by Al2O3/Al3Ni hybrid particles via in-situ reaction and evaluation of its mechanical properties, Materials Science & Engineering B 231, 57-65 (2018). DOI: https://doi.org/10.1016/j.mseb.2018.09.002
  • [22] R. Ramesh, S. Suresh Kumar, S. Gowrishankar, Production and characterization of aluminium metal matrix composite reinforced with Al3Ni by stir and squeeze casting, Applied Mechanics and Materials 766-767, 315-319 (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.766-767.315
  • [23] T. Satish Kumar, S. Shalini, K. Krishna Kumar, Synthesis and characterization of Al-Zn-Mg alloy/zircon sand reinforced composites, Arch. Metall. Mater. 63 (2), 689-695(2018). DOI: https://doi.org/10.24425/122395
  • [24] R. Srinivasan, H.K. Shivananad, Studies on tribological characterization of Carbon Nanotube reinforced with 6061 Aluminium Alloy Metal Matrix Composites coated with Nickel, International Journal of Applied Engineering Research 14, 3721-3729 (2019).
  • [25] M. Zadali, M. Kotiyani, K. Ranjbar, Wear and corrosion of in-situ formed Al 3Zr aluminide reinforced Al3003 surface composite, IJMR 110, 874-884 (2019). DOI: https://doi.org/10.3139/146.111819
  • [26] N. Radhika, R. Subramanian, Effect of ageing time on mechanical and tribological behaviour of Al hybrid composite, IJMR 105, 875-882 (2014). DOI: https://doi.org/10.3139/146.111098
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01fe1bf2-ea6e-48de-b9b6-00a8af57930d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.