PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical verification of analytical solution for autofrettaged high-pressure vessels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thick-walled cylinders are widely used in various engineering applications. In an optimal design of pressurized thick-walled cylinders, an increase in the allowable internal pressure can be achieved by an autofrettage process. In the paper, analysis is carried out to develop a procedure in which the autofrettage pressure is determined analytically. The obtained equivalent stress distribution is compared with those of the conventional solid wall and of several multi-layer vessels. The results of the analytical approach are verified by FEM modelling. Tensile tests have been carried out to determine the real mechanical properties of the material of the vessel and to create a material model. The presented example illustrates the advantages of the autofrettage technique.
Słowa kluczowe
Rocznik
Strony
731--744
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Department of Mechanical Engineering, Kraków, Poland
  • Cracow University of Technology, Department of Mechanical Engineering, Kraków, Poland
Bibliografia
  • 1. Adibi-Asl R., Livieri P., 2007, Analytical approach in autofrettaged spherical pressure vessels considering the Bauschinger effect, Transactions of the ASME, Journal of Pressure Vessel Technology, 129, 411-419
  • 2. Alegre J.M., Bravo P., Preciado M., 2006, Design of an autofrettaged high-pressure vessel, considering the Bauschinger effect, Proceedings of the Institution of Mechanical Engineers, Part E, 220, 1, 7-16
  • 3. Ayob A., Elbasheer M.K., 2007, Optimum autofrettage pressure in thick cylinders, Jurnal Mekanikal, 24, 1-14
  • 4. Huang X.P., Cui W.C., 2006, Effect of Bauschinger effect and yield criterion on residual stress distribution of autofrettaged tube, Transactions of the ASME, Journal of Pressure Vessel Technology, 128, 212-216
  • 5. Jahed H., Farshi B., Karimi M., 2006, Optimum autofrettage and shrink-fit combination in multi-layer cylinders, Transactions of the ASME, Journal of Pressure Vessel Technology, 128, 196-200
  • 6. Koh S.K., 2000, Fatigue analysis of autofrettaged pressure vessels with radial holes, International Journal of Fatigue, 22, 8, 717-726
  • 7. Krasiński M., Stodulski M., Trojnacki A., 2013, Stress modification in multi-layer walls of expanded pressure vessels, Key Engineering Materials, 542, 81-95
  • 8. Kumar N., Mondal S.C., Mandal D.K., Acharyaa S.K., 2011, Optimum autofrettage pressure and shrink-fit combination for minimum stress in multilayer pressure vessel, International Journal of Engineering, Science and Technology, 3, 5, 4020-4030
  • 9. Majzoobi G.H., Farrahi G.H., Mahmoudi A.H., 2003, A finite element simulation and an experimental study of autofrettage for strain hardened thick-walled cylinders, Materials Science and Engineering, 359, 1/2, 326-331
  • 10. Majzoobi G.H., Ghomi A., 2006, Optimisation of autofrettage in thick-walled cylinders, Journal of Achievements in Materials and Manufacturing Engineering, 16, 1/2, 124-131
  • 11. Timoshenko S., Goodier J.N., 1951, Theory of elasticity, McGraw-Hill Book Company, Inc.N. York, Toronto, London
  • 12. Zhao W., Seshadri R., Dubey R.N., 2003, On thick-walled cylinder under internal pressure, Transactions of the ASME, Journal of Pressure Vessel Technology, 125, 267-273
  • 13. Życzkowski M. (Edit.), 1981, Combined Loadings in the Theory of Plasticity, Polish Sci. Publ., Warszawa
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01f925fd-bf0a-404b-96d7-3b6308142434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.