PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the piston vibration modes of high-performance 2.2 L gasoline engine under different skirt lengths

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to perform modal and harmonic response analyses to show how the piston skirt length reacts. The studied aluminium piston was generated in CATIA CAD Software and consequentially this was simulated in ANSYS software using modal and harmonic response tools. The piston finite element model was built to predict the basic modal parameters such as: natural frequencies, vibration modes and deformations. Different grid sensitivity tests have been done to improve the accuracy of the piston model. The piston with larger skirt has shown 77% higher vibration deformations than piston with smaller skirt. The proposed methodology can be easily used by a design engineer to perform dynamic behaviour studies of moving components and assemblies in Internal Combustion engines and not only.
Rocznik
Strony
art. no. 2024220
Opis fizyczny
Bibliogr. 19 poz., il. kolor., rys., wykr.
Twórcy
  • Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece, 26504
Bibliografia
  • 1. Z. Gao, C. Finney, C. Daw, T.J. LaClair, D. Smith; Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks; SAE Int. J. Commer. Veh., 2014, 7(2), 414-431; DOI: 10.4271/2014-01-2326
  • 2. S. Theodossiades, N. Morris, M. Mohammadpour; On the Road Towards Zero-Prototype Development of Electrified Powertrains via Modelling NVH and Mechanical Efficiency; In: Advances in Engine and Powertrain Research and Technology: Design-Simulation-Testing-Manufacturing. Springer International Publishing, 2022, 267-290; DOI: 10.1007/978-3-030-91869-9_11
  • 3. P. Nunthavarawong, S.M. Rangappa, S. Siengchin, K. Dohda; Diamond-Like Carbon Coatings; CRC Press, 2022; DOI: 10.1201/9781003189381
  • 4. S. Furuhama, S. Sasaki; New Device for the Measurement of Piston Frictional Forces in Small Engines; SAE Technical Paper 831284, 1983; https://www.jstor.org/stable/44647649
  • 5. R.A. Mufti, M. Priest, R.J. Chittenden; Analysis of piston assembly friction using the indicated mean effective pressure experimental method to validate mathematical models; Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(8), 1441-1457; DOI: 10.1243/09544070JAUTO469
  • 6. D.F. Li, S.M. Rohde, H.A. Ezzat; An Automotive Piston Lubrication Model; A S L E Transactions, 1983, 26(2), 151-160; DOI: 10.1080/05698198308981489
  • 7. R. Mazouzi, A. Kellaci, A. Karas; Effects of piston design parameters on skirt-liner dynamic behaviour; Industrial Lubrication and Tribology, 2016, 68(2), 250-258; DOI: 10.1108/ILT-07-2015-0103
  • 8. B. Littlefair et al.; Transient tribo-dynamics of thermo-elastic compliant high-performance piston skirts; Tribol. Lett., 2014, 53(1), 51-70; DOI: 10.1007/s11249-013-0243-6
  • 9. Z. Geng, J. Chen; Investigation into piston-slap-induced vibration for engine condition simulation and monitoring; J. Sound Vib., 2005, 282(3-5), 735-751; DOI: 10.1016/j.jsv.2004.03.057
  • 10. S. Teraguchi, W. Suzuki, M. Takiguchi, D. Sato; Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston; SAE Technical Paper 2001-01-0566, 2001; https://www.jstor.org/stable/44724333
  • 11. N. Dolatabadi, S. Theodossiades, S.J. Rothberg; On the identification of piston slap events in internal combustion engines using tribodynamic analysis; Mech. Syst. Signal Process., 2015, 58-59, 308-324; DOI: 10.1016/j.ymssp.2014.11.012
  • 12. A. Zavos, P.G. Nikolakopoulos; Measurement of friction and noise from piston assembly of a single-cylinder motorbike engine at realistic speeds; Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(13), 1715-1735; DOI: 10.1177/0954407017734770
  • 13. P. Korkos, P.G. Nikolakopoulos; Performance evaluation of internal combustion engine under noise measurements an experimental and analytical procedure; Tribology in Industry, 2020, 42(1), 10-31; DOI: 10.24874/ti.2020.42.01.02
  • 14. T. Kobayashi; New Proposal of Piston Skirt Form using Multi Objective Optimization Method; SAE Technical Paper 2011-01-1079, 2011; DOI: 10.4271/2011-01-1079
  • 15. P. Żurawski; Optimization of the combustion chamber strength of aluminum pistons in diesel engines using the DuralBowl technology; Combustion Engines, 2023, 62(1), 91-96; DOI: 10.19206/CE-153000
  • 16. S. Kuppuraj, K.S. Kumar; Design and Analysis of I.C. Engine Piston and Piston-Ring on Composite Material Using Creo and Ansys Software; 2016; https://www.jes.ind.in
  • 17. B. Zheng, J. Zhang, Y. Yao; Finite Element Analysis of the Piston Based on ANSYS; In: Proceedings in 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) 2019, 1908-1911; DOI: 10.1109/ITNEC.2019.8729409
  • 18. B. Zheng, S.Y. Fu, J.L. Lei; Titanium alloy piston thermo-mechanical coupling simulation and multi-objective optimization design; Advances in Mechanical Engineering, 2022, 14(4); DOI: 10.1177/16878132221094895
  • 19. A. Zavos, P.G. Nikolakopoulos; Investigation of the top compression ring power loss and energy consumption for different engine conditions; Tribology - Materials, Surfaces and Interfaces, 2022, 16(2), 130-142; DOI: 10.1080/17515831.2021.1907682
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01f8e5a6-ac0f-462c-8cf3-57e467e77c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.