PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Information System for the Polish Marine Areas : Modelling of Structures and Dynamics of Physical Processes in the Southern Baltic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Researching the dynamic environment of the Baltic Sea requires an interdisciplinary approach, with numerical models and computer simulations becoming essential tools. The 3D CEMBS-PolSEA ecosystem model, developed at the Institute of Oceanology of the Polish Academy of Sciences, aims to determine the basic hydrodynamic parameters of the southern Baltic Sea. The CSI-POM service (Digital Information System on the Environment of Polish Marine Areas) consists of new tools for studying the structures, dynamics, and variability of physical processes in the southern Baltic. The service includes tools for determining the thermocline, halocline, and pycnocline, conducting spatio-temporal analysis of water column structure, automatic detection of vortices, testing water mass inertia under forecasted wind forces, and automatic detection of upwelling currents. The novelty of this work lies in the development of tools for studying the dynamics of the structure and variability of physical processes in the southern Baltic Sea. These innovative techniques support scientists, the maritime community, and regulatory bodies by providing detailed insights into local phenomena such as vortex formation, water mixing. The tools are implemented on the project server and the Tryton+ supercomputer, enabling high temporal and spatial resolution results. The CSI-POM system’s operational mode ensures access to the latest model results, with real-time and forecasted data. This enhances understanding and forecasting capabilities, informing about the current state of the environment and potential threats in the open sea.
Czasopismo
Rocznik
Strony
Art. no. 67104
Opis fizyczny
Bibliogr. 22 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Andrejev, O., Soomere, T., Sokolov, A., Myrberg, K., 2011. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53(1), 309-334. https://doi.org/10.5697/oc.53-1-TI.309
  • 2. Bossier, S., Palacz, A.P., Nielsen, J.R., Christensen, A., Hoff, A., Maar, M., Gislason, H., Bastardie, F., Gorton, R., Fulton, E.A., 2018. The Baltic sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0199168
  • 3. Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019. High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water 11(10), 2057. https://doi.org/10.3390/w11102057
  • 4. Dybowski, D., Janecki, M., Dzierzbicka-Głowacka, L., 2024a. Various aspects of marine circulation in the Southern Baltic in a submesoscale perspective. Weather Forecast., under review.
  • 5. Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020. Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecosystem Model of he Puck Bay, Southern Baltic Sea. Water 12(7), 2068. https://doi.org/10.3390/w12072068
  • 6. Dybowski, D., Janecki, M., Nowicki, A., Jakacki, J., Dzierzbicka-Głowacka, L., 2024b. Development and validation of a high-resolution hydrodynamic model for Polish Marine Areas. Oceanologia 67(1), 11 pp. https://doi.org/10.5697/EWGU8323
  • 7. Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a. Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3), 519-541. https://doi.org/10.5697/oc.55-3.519
  • 8. Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b. Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3), 543-572. https://doi.org/10.5697/oc.55-3.543
  • 9. Graftieaux, L., Michard, M., Grosjean, N., 2001. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422. https://doi.org/10.1088/0957-0233/12/9/307
  • 10. Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., Meier, H.E.M., 2019. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model. Clim. Dynam. 53, 5945-5966. https://doi.org/10.1007/s00382-019-04908-9
  • 11. Gustafsson, E., Wällstedt, T., Humborg, C., Mörth, C.-M., Gustafsson, B.G., 2014. External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea. Global Biogeochem. Cy. 28, 1358-1370. https://doi.org/10.1002/2014GB004888
  • 12. Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J., 2019. Nemo-Nordic 1.0: A NEMO-based ocean model for the Baltic and North seas – Research and operational applications. Geosci. Model. Dev. 12, 363-386. https://doi.org/10.5194/gmd-12-363-2019
  • 13. Janecki, M., Dybowski, D., Jakacki, J., Nowicki, A., Dzierzbicka-Glowacka, L., 2021. The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model. Remote. Sens.-Basel 13, 3572. https://doi.org/10.3390/rs13183572
  • 14. Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022. A New Method for Thermocline and Halocline Depth Determination at Shallow Seas. J. Phys. Oceanogr. 52(9), 2205-2218 https://doi.org/10.1175/JPO-D-22-0008.1
  • 15. Jedrasik, J., Cieślikiewicz, W., Kowalewski, M., Bradtke, K., Jankowski, A., 2008. 44 Years Hindcast of the sea level and circulation in the Baltic Sea. Coast. Eng. 55, 849-860. https://doi.org/10.1016/j.coastaleng.2008.02.026
  • 16. Leppäranta, M., Myrberg, K. (Eds.), 2009. Topography and hydrography of the Baltic Sea, in: Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg, 41-88. https://doi.org/10.1007/978-3-540-79703-6_3
  • 17. Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf. Res. 112, 1-13. https://doi.org/10.1016/j.csr.2015.11.008
  • 18. Marmefelt, E., Omstedt, A., 1993. Deep water properties in the Gulf of Bothnia. Cont. Shelf. Res. 13, 169-187. https://doi.org/10.1016/0278-4343(93)90104-6
  • 19. Neumann, T., Fennel, W., Kremp, C., 2002. Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment. Global Biogeochem. Cy. 16(3), 7-1-7-19. https://doi.org/10.1029/2001gb001450
  • 20. Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015. Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia 57(1), 17-24. https://doi.org/10.1016/j.oceano.2014.07.001
  • 21. Öberg, J., 2017. Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets.
  • 22. Stigebrandt, A., 1983. A Model for the Exchange of Water and Salt Between the Baltic and the Skagerrak. J. Phys. Oceanogr. 13 (3), 411-427.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01f8bb20-0552-4714-a634-cd96e07159c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.