PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potencjał aplikacyjny witaminy B12 i jej analogów

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Czasopismo
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 45 poz., il. kolor., rys.
Twórcy
  • Instytut Chemii Organicznej, Wydział Chemiczny, Politechnika Łódzka
Bibliografia
  • [1] Zelder F., 2015, Recent trends in the development of vitamin B12 derivatives for medicinal applications, Chem. Commun., 51, 14004-14017.
  • [2] Zhou K., Oetterli R., Brandl H., Lyatuu F., Buckel W., Zelder F., 2012, Chemistry and bioactivity of an artificial adenosylpeptide B12 cofactor, ChemBioChem, 13, 2052-2055.
  • [3] Krautler B., 2015, Antivitamins B12 - a structure- and reactivity- based concept, Chem. Eur. J., 21, 11280-11287.
  • [4] Ruetz M., Salchner R., Wurst K., Fedosov S., Krautler B., 2013, Phenylethynylcobalamin: a light-stable and thermolysis-resistant organometallic vitamin B12 derivative prepared by radical synthesis, Angew. Chem. Int. Ed., 52, 11406-11409; Angew. Chem. 2013, 125, 11617-11620.
  • [5] Ruetz M., Gherasim C., Gruber K, Fedosov S., Banerjee R., Krautler B., 2013, Access to organometallic arylcobaltcorrins through radical synthesis: 4-ethylphenylcobalamin, a potential “antivitamin B12”, Angew. Chem. Int. Ed., 52, 2606-2610; Angew. Chem. 2013, 125,2668-2672.
  • [6] Giedyk M., Goliszewska K, Gryko D., 2015, Vitamin B12 catalysed reactions, Chem. Soc. Rev., 44, 3391-3404.
  • [7] o´Proinsias K., Giedyk M., Gryko D., 2013, Vitamin B12: chemical modifications, Chem. Soc. Rev., 42, 6605-6619.
  • [8] Hodgkin D. C., Kamper J., Mackay M., Pickworth J., Trueblood K. N., White J. G., 1956, Structure of Vitamin B12, Nature, 178, 64-66.
  • [9] Folkers K., B 12 , Vol. I (ed.: D. Dolphin), Wiley, New York 1982, pp. 1-15.
  • [10] Nexø E., Vitamin B12 and B12-proteins (eds.: Krautler B., Arigoni D., Golding B. T.), Wiley-VCH, Weinheim 1998, pp. 461-475.
  • [11] Andersen C. B. F., Madsen M., Storm T., Moestrup S. K., Andersen G. R., 2010, Structural basis for receptor recognition of vitamin-B12-intrinsic factor complexes, Nature, 464, 445-448.
  • [12] Banerjee R., 2006, B12 Trafficking in Mammals: A Case for Coenzyme Escort Service, ACS Chem. Biol., 1, 149-159.
  • [13] Lerner-Ellis J. P., Tirone J. C., Pawelek P. D., Dore C., Atkinson J. L., Watkins D., Morel C. F., Fujiwara T. M., Moras E., Hosack A. R., Dunbar G. V., Antonicka H., Forgetta V., Dobson C. M., Leclerc D., Gravel R. A., Shoubridge E. A., Coulton J. W., Lepage P., Rommens J. M., Morgan K., Rosenblatt D. S., 2006, Identification of the gene responsible for methylmalonic aciduria and homocystinuria, CblC type, Nature Genetics, 38, 93-100.
  • [14] Frey P. A., Hegeman A. D., Enzymatic Reaction Mechanisms, Oxford University Press, New York 2007.
  • [15] Zelder F., Alberto R., The Porphyrin Handbook, Vol. 25 (eds.: Kadish K. M., Smith K. M., Guilard R.), Elsevier Science San Diego 2012, pp. 83-130.
  • [16] Mutti E., Ruetz M., Birn H., Krautler B., Nexo E., 2013, 4-Ethylphenyl- cobalamin impairs tissue uptake of vitamin B12 and causes vitamin B12 deficiency in mice, Plos One, 8,e75312. doi: 10.1371/ journal.pone.0075312.
  • [17] Reynolds E., 2006, Vitamin B12, folic acid, and the nervous system, Lancet Neurol., 5, 949-960.
  • [18] Zhang Y., Hodgson N. W., Trivedi M. S., Abdolmaleky H. M., Fournier M., Cuenod M., Do K. Q., Deth R. C., 2016, Decreased brain levels of vitamin B12 in aging, autism and schizophrenia, PLoS ONE 11, 1-19.
  • [19] Drummond J. T., Matthews R. G., 1994, Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction, Biochemistry, 33, 3732-3741.
  • [20] McLean G. R., Pathare P. M., Wilbur D. S., Morgan A. C., Woodhouse C. S., Schrader J. W., Ziltener H. J., 1997, Cobalamin analogues modulate the growth of leukemia cells in vitro, Cancer Res., 57, 4015-4022.
  • [21] Grim S. A., Rapp R. P., Martin C. A., Evans M. E., 2005, Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant Staphylococcus ureus, Pharmacotherapy, 25, 253-264.
  • [22] Klug G., 2014, Beyond catalysis: vitamin B12 as a cofactor in gene regulation, Mol. Microbiol., 91, 635-640.
  • [23] Friedrich W., Vitamin B12 und Verwandte Corrinoide (ed.: W. Friedrich), Thieme, Stuttgart 1975, pp. 81-87.
  • [24] Hogenkamp H. P. C., Collins D. A., Grissom C. B., West F. G., Chemistry and Biochemistry of B 12 , Wiley-Interscience, New York 1999.
  • [25] Brown K. L., 2005, Chemistry and enzymology of vitamin B12, Chem. Rev., 105, 2075-2149.
  • [26] Gruber K., Puffer B., Krautler B., 2011, Vitamin B12-derivatives - enzyme cofactors and ligands of proteins and nucleic acids, Chem. Soc. Rev., 40, 4346-4363.
  • [27] McLean G. R., Pathare P. M., Wilbur D. S., Morgan A. C., Woodhouse C. S., Schrader J. W., Ziltener H. J., 1997, Cobalamin analogues modulate the growth of leukemia cells in vitro, Cancer Res., 57, 4015-4022.
  • [28] Zhou K., Zelder F., 2010, Vitamin B12 mimics with a peptide backbone and tuneable coordination and redox properties, Angew. Chem., Int. Ed., 49, 5178-5180.
  • [29] Carmel R., Koppenhagen V. B., 1977, The effect of rhodium and copper analogs of cobalamin on human cells in vitro, Arch. Biochem. Biophys., 184, 135-140.
  • [30] Cottrell J. E., Casthely P., Brodie J. D., Patel K., Klein A., Turndorf H., 1978, Prevention of nitroprusside-induced cyanide toxicity with hydroxocobalamin, N. Engl. J. Med., 298, 809-811.
  • [31] Shepherd G., Velez L. I., 2008, Role of hydroxocobolamin in acute cyanide poisoning, Ann. Pharmacother., 42, 661-669.
  • [32] Mushett C. W., Kelley K. L.,. Boxer G. E., Rickards J. C., 1952, Antidotal efficacy of vitamin B12a (hydroxo-cobalamin) in experimental cyanide poisoning, Proc. Soc. Exp. Biol. Med., 81, 234-237.
  • [33] Hassan S. S. M., Hamza M. S. A., Kelany A. E., 2007, A novel spectrophotometric method for batch and flow injection determination of cyanide in electroplating wastewater, Talanta, 71, 1088-1095.
  • [34] Mannel-Croise C., Probst B., Zelder F., 2009, A straightforward method for the colorimetric detection of endogenous biological cyanide, Anal. Chem., 81, 9493-9498.
  • [35] Aebli B., Mannel-Croise C., Zelder F, 2014, Controlling binding dynamics of corrin-based chemosensors for cyanide, Inorg. Chem., 53, 2516-2520.
  • [36] Zelder F., Tivana L., 2015, Corrin-based chemosensors for the ASSURED detection of endogenous cyanide, Org. Biomol. Chem., 13, 14-17.
  • [37] Clardy S. M., Allis D. G., Fairchild T. J., Doyle R. P., 2011, Vitamin B12 in drug delivery: breaking through the barriers to a B12 bioconjugate pharmaceutical, Expert Opin. Drug Delivery, 8, 127-140.
  • [38] Petrus A. K., Fairchild T. J., Doyle R. P., 2009, Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs, Angew. Chem., Int. Ed., 48, 1022-1028.
  • [39] Shell T. A., Shell J. R., Rodgers Z. L., Lawrence D. S., 2014, Tunable visible and near IR photoactivation of light-responsive compounds, Angew. Chem., Int. Ed., 53, 875-878.
  • [40] Mundwiler S., Spingler B., Kurz P., Kunzeand S., Alberto R., 2005, Cyanide-bridged vitamin B12-cisplatin conjugates, Chem.- Eur.J., 11, 4089-4095.
  • [41] Lee M., Grissom C. B., 2009, Design, synthesis, and characterization of fluorescent cobalamin analogues with high quantum efficiencies, Org. Lett., 11, 2499-2502.
  • [42] Shell T. A., Lawrence D. S., 2011, A new trick (hydroxyl radical generation) for an old vitamin (B12), J. Am. Chem. Soc., 133, 2148-2150.
  • [43] Giedyk M., o´Proinsias K., Kurcon S., Sharina I., Martin E., Gryko D., 2014, Small alterations in cobinamide structure considerably influence sGC activation, ChemMedChem, 9, 2344-2350.
  • [44] Sharina I., Sobolevsky M., Doursout M. F., Gryko D., Martin E., 2012, Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain, J. Pharmacol. Exp. Ther., 340, 723-732.
  • [45] Chrominski M., o´Proinsias K., Martin E., Gryko D., 2013, Protoporphyrin IX/Ccobyrinate derived hybrids - novel activators of soluble guanylyl cyclase, Eur. J. Org. Chem., 1530-1537.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01f527b8-54f8-487c-9b3c-09189cf56c8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.