PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theory of Synthesis of Asymmetrical Delay Line with the Surface Acoustic Wave

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.
Rocznik
Strony
117--127
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Measurement and Application Electrical, Faculty of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
  • Department of Measurement and Application Electrical, Faculty of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
  • Department of Measurement and Application Electrical, Faculty of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
  • Department of Measurement and Application Electrical, Faculty of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
autor
  • Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
  • Department of Desing and Machine Elements, Mechanical Engineering Faculty, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Alshaykh M.S. et al. (2017), High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines, Optics Letters, 42, 8, 1548-1551, http://dx.doi.org/10.1364/OL.42.001548.
  • 2. Audier X., Balla N., Rigneault H. (2017), Pumpprobe micro-spectroscopy by means of an ultra-fast acousto-optics delay line, Optics Letters, 42, 2, 294-297, http://dx.doi.org/10.1364/OL.42.000294.
  • 3. Cho Y., Kumar A., Xu S., Zou J. (2017), Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography, Photons Plus Ultrasound: Imaging and Sensing 2017, Book Series: Proceedings of SPIE, Vol. 10064, Article Number: UNSP 100645E.
  • 4. Djoumi L. et al. (2016), New optical approach of SAW delay line characterization, Proceedings of the 30th Anniversary Eurosensors Conference – Eurosensors 2016, Book Series: Procedia Engineering, 168, 838-843, http://dx.doi.org/10.1016/j.proeng.2016.11.286.
  • 5. Fang C., Ustun A., Cho Y., Zou J. (2017), A charge amplification approach for photoacoustic tomography (PAT) with parallel acoustic delay line (PADL) arrays, Measurement Science and Technology, 28, 5, https://doi.org/10.1088/1361-6501/aa6367.
  • 6. Frivaldsky M., Drgona P., Spanik P. (2013), Experimental analysis and optimization of key parameters of ZVS mode and its application in the proposed LLC converter designed for distributed power system application, International Journal of Electrical Power & Energy Systems, 47, 448-456.
  • 7. Gruber C., Binder A., Lenzhofer M. (2016), Fast phase analysis of SAW delay lines, Internet of Things: IOT Infrastructures, IOT 360, Pt II, Book Series: Lecture Notes of the Institute for Computer Sciences Social Informatics and Telecommunications Engineering, 170, 373-382, https://doi.org/10.1007/978-3-319-47075-7 42.
  • 8. Hartmann C. S. (1985), Future high volume applications of SAW devices, IEEE Ultrasonic Symposium, San Francisco, CA, USA.
  • 9. Hasanov A. R., Hasanov R. A. (2017), Some peculiarities of the construction of an acousto-optic delay line with direct detection, Instruments and Experimental Techniques, 60, 5, 722-724, http://dx.doi.org/10.1134/S0020441217050062.
  • 10. Jozwik J. (2016), Identification and monitoring of noise sources of cnc machine tools by acoustic holography methods, Advances in Science and Technology-Research Journal, 10, 30, 127-137, http://dx.doi.org/10.12913/22998624/63386.
  • 11. Kim J., Kim S., Lee K. (2017), Development of wireless, chipless neural stimulator by using one-port surface acoustic wave delay line and diode-capacitor interface, Japanese Journal of Applied Physics, 56, 6, http://dx.doi.org/10.7567/JJAP.56.06GN13.
  • 12. Krolczyk G. M., Krolczyk J. B., Legutko S., Hunjet A. (2014), Effect of the disc processing technology on the vibration level of the chipper during operations, Tehnicki Vjesnik-Technical Gazette, 21, 2, 447-450.
  • 13. Lara R., Jimenez-Romero R., Perez-Hidalgo F., Redel-Macias M. D. (2015), Influence of constructive parameters and power signals on sound quality and airborne noise radiated by inverter-fed induction motors, Measurement, 73, 503-514, http://dx.doi.org/10.1016/j.measurement.2015.05.049.
  • 14. Li Z., Jiang Y., Hu C., Peng Z. (2016), Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: a review, Measurement, 90, 4-19, http://dx.doi.org/10.1016/j.measurement.2016.04.036.
  • 15. Li Z., Jiang Y., Hu C., Peng Z. (2017), Difference equation based empirical mode decomposition with application to separation enhancement of multi-fault vibration signals, Journal of Difference Equations and Applications, 23, 1-2, 457-467, http://dx.doi.org/10.1080/10236198.2016.1254206.
  • 16. Lukyanov D., Shevchenko S., Kukaev A., Safronov D. (2017), Experimental study of laser trimmed surface acoustic wave delay line topologies, Optical Sensors 2017, Book Series: Proceedings of SPIE, 10231, Article Number: UNSP 102311T, http://dx.doi.org/10.1117/12.2265675.
  • 17. Marzo A., Ghobrial A., Cox L., Caleap M., Croxford A., Drinkwater B. W. (2017), Realization of compact tractor beams using acoustic delaylines, Applied Physics Letters, 110, 1, Article Number: 014102, http://dx.doi.org/10.1063/1.4972407.
  • 18. Neveselý M. (1986), Akustoelektronika, Bratislava, ALFA.
  • 19. Ruppel C. C. W., Fjeldy T. A. (2000), Advances in SAW Technology Systems and Applications, World Scientific, Singapore.
  • 20. Sawczuk W. (2017), The application of vibration accelerations in the assessment of average friction coefficient of a railway brake disc, Measurement Science Review, 17, 3, 125-134, http://dx.doi.org/10.1515/msr-2017-0016.
  • 21. Sawczuk W., Szymanski G. M. (2017), Diagnostics of the railway friction disc brake based on the analysis of the vibration signals in terms of resonant frequency, Archive of Applied Mechanics, 87, 5, 801-815.
  • 22. Spanik P., Sedo J., Drgona P., Frivaldsky M. (2013), Real time harmonic analysis of recuperative current through utilization of digital measuring equipment, Elektronika ir Elektrotechnika, 19, 5, 33-38.
  • 23. Tung P.-H., Wang W.-C., Yang C.-H. (2015), A study in wedge waves with applications in acoustic delay-line, Proceedings of the 2015 ICU International Congress on Ultrasonics, Book Series: Physics Procedia, 70, 199-203, http://dx.doi.org/10.1016/j.phpro.2015.08.122.
  • 24. Zhang B., Hu H. (2015), A FEM simulation approach for multilayered SAW delay line devices, IEEE International Conference on Robotics and Biomimetics (ROBIO), 970-975.
  • 25. Zheng Z., Han T., Qin P. (2015), Maximum measurement range and accuracy of SAW reflective delay line sensors, Sensors, 15, 10, 26643-26653, http://dx.doi.org/10.3390/s151026643.
  • 26. Zhu H. S., Rais-Zadeh M. (2017), Non-reciprocal acoustic transmission in a GaN delay line using the acoustoelectric effect, IEEE Electron Device Letters, 38, 6, 802-805, http://dx.doi.org/10.1109/LED.2017.2700013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01ec415e-b93d-48e6-baa5-b48730b6d08b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.