PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical performance analysis of the M2M wireless link with an antenna selection system over interference limited dissimilar composite fading environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers direct mobile-to-mobile (M2M) communications with a dual antenna selection (AS) system at a destination mobile node (DMN) in interference limited, dissimilar composite fading environments. In particular, we model dissimilar interference limited signals at the inputs of the dual branch AS system as (i) the ratio of two Nakagami-m (N) random variables (RVs) at the first branch and (ii) the ratio of two Rice RVs at the second branch, in order to account for non line-of-sight (NLOS) and line-of-sight (LOS) communications, respectively. Moreover, we assume variable powers of the desired as well as interference signals at the output of the DMN in order to account for the impact of shadowing. For the proposed model, we derive probability density functions, cumulative distribution functions, outage probabilities and average level crossing rates. The derived statistical results are evaluated for all the statistical measures considered and are graphically presented in order to provide insight into the impact of composite fading severities and LOS factors for the desired signal, as well as for the interference, on the system performances.
Rocznik
Strony
569--582
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
autor
  • Faculty of Electronic Engineering, University of Niš, A. Medvedeva 14, 18000 Niš, Serbia
  • Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
  • Department of Signal Theory and Communications, Charles III University of Madrid, 28911 Leganes, Spain
  • Faculty of Economics, University of Priština in Kosovska Mitrovica, Kolašinska 156, 38220 Kosovska Mitrovica, Serbia
  • College of Applied Technical Sciences in Niš, A. Medvedeva 20, 18000 Niš, Serbia
Bibliografia
  • [1] Abdi, A., Gao, C. and Haimovich, A.M. (2003). Level crossing rate and average fade duration in MIMO mobile fading channels, 2003 IEEE 58th Vehicular Technology Conference, Orlando, USA, pp. 3164–3168.
  • [2] Agiwal, M., Roy, A. and Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey, IEEE Communications Surveys and Tutorials 18(3): 1617–1655.
  • [3] Bithas, P., Efthymoglou, G. and Kanatas, A. (2018a). V2V cooperative relaying communications under interference and outdated CSI, IEEE Transactions on Vehicular Technology 67(4): 3466–3480.
  • [4] Bithas, P., Kanatas, A., da Costa, D. and Upadhyay, P. (2018b). A low complexity communication technique for mobile-to-mobile communication systems, 14th IEEE International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, pp. 400–405.
  • [5] Bithas, P., Kanatas, A., da Costa, D., Upadhyay, P. and Dias, U. (2017). On the double-generalized gamma statistics and their application to the performance analysis of V2V communications, IEEE Wireless Communications 66(1): 448–460.
  • [6] Bithas, P.S., Nikolaidis, V., Kanatas, A.G. and Karagiannidis, G.K. (2020). UAV-to-ground communications: Channel modeling and UAV selection, IEEE Transactions on Communications 68(8): 5135–5144.
  • [7] Dixit, D., Kumar, N., Sharma, S., Bhatia, V., Panic, S. and Stefanovic, C. (2021). On the ASER performance of UAV-based communication systems for QAM schemes, IEEE Communications Letters 25(6): 1835–1838.
  • [8] Djosic, D., Stefanovic, C., Milic, D. and Stefanovic, M. (2019). System performances of SC reception in asymmetric multipath fading environments, The University Thought, Publication in Natural Sciences 9(2): 56–62.
  • [9] Djošić, D., Milošević, N., Nikolić, Z., Dimitrijević, B., Bandjur, M. and Stefanović, M. (2017). Statistics of signal to interference ratio process at output of mobile-to-mobile Rayleigh fading channel in the presence of cochannel interference, Facta Universitatis, Automatic Control and Robotics 16(2): 185–196.
  • [10] Gradshteyn, I.S. and Ryzhik, I.M. (2000). Table of Integrals, Series, and Products, 6th Edn, Academic Press, New York.
  • [11] Hajri, N., Khedhiri, R. and Youssef, N. (2020). On selection combining diversity in dual-hop relaying systems over double Rice channels: Fade statistics and performance analysis, IEEE Access 8: 72188–72203, DOI: 10.1109/ACCESS.2020.2986142.
  • [12] Huang, C., Wang, R., Tang, P., He, R., Ai, B., Zhong, Z., Oestges, C. and Molisch, A. F. (2020). Geometry-cluster-based stochastic MIMO model for vehicle-to-vehicle communications in street canyon scenarios, IEEE Transactions onWireless Communications 20(2): 755–770.
  • [13] Ivanis, P., Drajic, D. and Vucetic, B. (2007). Level crossing rates of Ricean MIMO channel eigenvalues for imperfect and outdated CSI, IEEE Communications Letters 11(10): 775–777.
  • [14] Jaiswal, N. and Purohit, N. (2021). Performance analysis of NOMA-enabled vehicular communication systems with transmit antenna selection over double Nakagami-m fading, IEEE Transactions on Vehicular Technology 70(12): 12725–12741.
  • [15] Jakes, W.C. and Cox, D.C. (1994). Microwave Mobile Communications, Wiley/IEEE Press, Hoboken.
  • [16] Khedhiri, R., Hajri, N., Youssef, N. and Pätzold, M. (2014). On the first-and second-order statistics of selective combining over double Nakagami-m fading channels, Proceedings of the 80th IEEE Vehicular Technology Conference (VTC2014–Fall), Vancouver, Canada, pp. 1–5.
  • [17] Kostić, I. (2005). Analytical approach to performance analysis for channel subject to shadowing and fading, IEE Proceedings—Communications 152(6): 821–827.
  • [18] Marins, T.R.R., Dos Anjos, A.A., Da Silva, C.R.N., Peñarrocha, V.M.R., Rubio, L., Reig, J., De Souza, R.A.A. and Yacoub, M.D. (2021). Fading evaluation in standardized 5G millimeter-wave band, IEEE Access 9: 67268–67280, DOI: 10.1109/ACCESS.2021.3076631.
  • [19] Milenkovic, V., Panic, S., Denic, D. and Radenkovic, D. (2017). Novel method for 5G systems NLOS channels parameter estimation, International Journal of Antennas and Propagation 2017, Article ID: 5236246, DOI: 10.1155/2017/5236246.
  • [20] Milic, D., Djosic, D., Stefanovic, C., Panic, S. and Stefanovic, M. (2016). Second order statistics of the SC receiver over Rician fading channels in the presence of multiple Nakagami-m interferers, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 29: 222–229, DOI: 10.1002/jnm.2065.
  • [21] Milosevic, N., Stefanovic, C., Nikolic, Z., Bandjur, M. and Stefanovic, M. (2018a). First- and second-order statistics of interference-limited mobile-to-mobile Weibull fading channel, Journal of Circuits, Systems and Computers 27(11): 1850168.
  • [22] Milosevic, N., Stefanovic, M., Nikolic, Z., Spalevic, P. and Stefanovic, C. (2018b). Performance analysis of interference-limited mobile-to-mobile κ − μ fading channel, Wireless Personal Communications 101(3): 1685–1701.
  • [23] Mumtaz, S., Huq, K. and Rodriguez, J. (2014). Direct mobile-to-mobile communication: Paradigm for 5G, IEEE Wireless Communications 21(5): 14–23.
  • [24] Panic, S., Stefanovic, M., Anastasov, J. and Spalevic, P. (2013). Fading and Interference Mitigation in Wireless Communications, CRC Press, New York.
  • [25] Pavlović, D.H., Sekulović, N.M., Milovanović, G.V., Panajotović, A.S., Stefanović, Č.M. and Popović, J. Z. (2013). Statistics for ratios of Rayleigh, Rician, Nakagami–m, and Weibull distributed random variables, Mathematical Problems in Engineering 2013, Article no. 252804.
  • [26] Sekulović, N., Panajotović, A., Drača, D., Stefanović, M. and Bandjur, M. (2018). Investigation into diversity order at micro and/or macro level in gamma shadowed Nakagami-m fading channels, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 31: e2288, DOI: 10.1002/jnm.2288.
  • [27] Shankar, P. (2004). Error rates in generalized shadowed fading channels, Wireless Personal Communications 28: 233–238, DOI: 10.1023/B:wire.0000032253.68423.86.
  • [28] Silva, C.D., Bhargav, N., Leonardo, E. and Yacoub, M. (2019). Ratio of two envelopes taken from α − μ, κ − μ, and η − μ variates and some practical applications, IEEE Access 214(2): 256–261.
  • [29] Stefanovic, C., Panic, S., Bhatia, V. and Kumar, N. (2021). On second-order statistics of the composite channel models for UAV-to-ground communications with UAV selection, IEEE Open Journal of the Communications Society 2: 534–544, DOI: 10.1109/OJCOMS.2021.3064873.
  • [30] Stefanovic, C., Pratesi, M. and Santucci, F. (2018a). Performance evaluation of cooperative communications over fading channels in vehicular networks, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Spain, pp. 1–4.
  • [31] Stefanovic, C., Veljkovic, S., Stefanovic, M., Panic, S. and Jovkovic, S. (2018b). Second order statistics of SIR based macro diversity system for V2I communications over composite fading channels, First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, pp. 569–573.
  • [32] Stefanovic, D., Stefanovic, C., Djosic, D., Milic, D., Rancic, D. and Stefanovic, M. (2019). LCR of the ratio of the product of two squared Nakagami-m random processes and its application to wireless communication systems, 2019 18th International Symposium (INFOTEH), Jahorina, Bosnia and Herzegovina, pp. 1–4.
  • [33] Sun, W., Shen, L., Shao, H. and Liu, P. (2021). Dynamic location models of mobile sensors for travel time estimation on a freeway, International Journal of Applied Mathematics and Computer Science 31(2): 271–287, DOI: 10.34768/amcs-2021-0019.
  • [34] Talha, B. and Patzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review, IEEE Vehicular Technology Magazine 6(2): 33–43.
  • [35] Wang, L.C., Liu, W.C. and Cheng, Y.H. (2008). Statistical analysis of a mobile-to-mobile Rician fading channel model, IEEE Transactions on Vehicular Technology 58(1): 32–38.
  • [36] Wu, J. and Fan, P. (2016). A survey on high mobility wireless communications: Challenges, opportunities and solutions, IEEE Access 4: 450–476, DOI: 10.1109/ACCESS.2016.2518085.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01eadbd7-0fa0-4a71-b7a5-2c28b6a7f8f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.