PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the corrosive destruction of underground degassing pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general frequency of development of pitting corrosion was established, taking into account the results of the analysis of mine waters and foreign materials, which are favorable conditions for theformation of corrosion of steel degassing pipelines. A base of initial data was created for modeling the corrosion process of a steel degassing gas pipeline at different points in time: the beginning of the corrosion process, its development, and the end of the process. Stress distribution, corrosion potential,as well as anodic and cathodic current densities depending on the size of the corrosion crack and the longitudinal deformation of the rocks of the sole of the production was analysed.Ithas been proven that the high level of corrosion processes of underground pipelines is the result of the interaction of the metal, which acts as an electrode, with groundwater, which acts as anelectrolyte, while the determining factors of the corrosion process are the electrical conductivity of the rocks of the bottom of the mine and the deformation processes in the pipelines. The reason of low service life of underground degassing pipelines, which are constantly exposed to mechanical and electrochemical corrosion, have been established.
Czasopismo
Rocznik
Strony
220--230
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., zdj.
Twórcy
  • Dnipro University of Technology, 19Yavornytskoho Ave., 49005,Dnipro, Ukraine
  • Dnipro University of Technology, 19Yavornytskoho Ave., 49005,Dnipro, Ukraine
  • Dnipro University of Technology, 19Yavornytskoho Ave., 49005,Dnipro, Ukraine
Bibliografia
  • [1]Kononenko M., Khomenko O., Myronova I. & Kovalenko I. (2022). Economic and environmental aspects of using mining equipment and emulsion explosives for ore mining. Mining Machines, 40(2), 88-97.https://doi.org/10.32056/KOMAG2022.2.4
  • [2]Khomenko O., Kononenko M., Myronova I., Kovalenko I., Cabana Edgar Cáceres&DychkovskyiR. (2023). Technology for increasing the level of environmental safety of iron ore mines with use of emulsion explosives. Mining Machines, 41(1), 48-57.https://doi.org/10.32056/KOMAG2023.1.5
  • [3]Shirin, L., Bartashevsky, S., Denyshchenko, O.&Yegorchenko, R. (2021). Improving the capacity of mine degassing pipelines. Naukovyi visnyk natsionalnoho hirnychoho universytetu, 6, 72 –77. https://doi.org/10.33271/nvngu/2021-6/072
  • [4]Yegorchenko, R., Mukha, O. & Shirin., L. (2022). The methods to calculate expediency of composite degassing pipelines. Naukovyi visnyk natsionalnoho hirnychoho universytetu, No4. 23-27. https://doi.org/10.33271/nvngu/2022-4/023
  • [5]Shirin, L. N., & Yegorchenko, R. R. (2022). Modeling the minds of the interaction of elements of the transport-technological system “mine gas pipeline –mining plant”. Oil and Gas Power Engineering, 1(37), 88–96. https://doi.org/10.31471/1993-9868-2022-1(37)-88-96
  • [6]Mensah, A., & Sriramula, S. (2024). Probabilistic finite element-based reliability of corroded pipelines with interacting corrosion cluster defects. International Journal of Pressure Vessels and Piping, 207, 105086. https://doi.org/10.1016/j.ijpvp.2023.105086
  • [7]Jiang, F., & Dong, S. (2024). Probabilistic-based burst failure mechanism analysis and risk assessment of pipelines with random non-uniform corrosion defects, considering the interacting effects. Reliability Engineering & System Safety, 242, 109783. https://doi.org/10.1016/j.ress.2023.109783
  • [8]Mineev, S.P., Pymonenko, D.M., Novikov, L.A. & Slashchev, A.I.(2019). Some features of transportation and processing of methane-air mixture in coal mines. Collection of scientific works of the National Mining University. Dnipro Vol. 59. P. 98-107. https://doi.org/10.33271/crpnmu/59.098
  • [9]Yegorchenko, R. R., Oksen, Yu. I., & Shirin, L. N. (2022). Modeling the flow of a methane-burning mixture with degassing gas pipelines of a folding configuration. Prospecting and Development of Oil and Gas Fields, 2(83), 54–62. https://doi.org/10.31471/1993-9973-2022-2(83)-54-62
  • [10]Milenin, A., Velikoivanenko, E., Rozynka, G., & Pivtorak, N. (2023). Numerical analysis of brittle strength of welded pipelines with corrosion metal loss in transportation of blends of natural gas with hydrogen. https://doi.org/10.21203/rs.3.rs-3303744/v1
  • [11]Dong, L., ZHANG, S., Gan, T., Qiu, Y., Song, Q., & Zhao, Y. (2023). Frequency Characteristics Analysis of Pipe-to-Soil Potential Under Metro Stray Current Interference Using Continuous Wavelet Transform Method. https://doi.org/10.2139/ssrn.4487556
  • [12]Sofiyskiy, K.K., Stasevich, R.K., Pritula, D.A. &E.E. Dudlya. (2016). Іmproving safety of transportation, extraction and utilization of methane of surface decontaminating wells. Geotechnical Mechanics. Dnipropetrovsk. VIP. 128p. 216
  • [13]Maznytskyi, A. S., Starovyerov, V. S. &Nikitenko K. O. (2019). An integral assessment of the impact of geological factors on the reliability of the operation of the main gas pipeline "Urengoi-PomariUzhhorod". Urban planning and territorial planning: Nac.-techn. zb. Answer ed. M. M. Ossetrin. K.: KNUBA. Vol. 70. P. 516-527
  • [14]Trus. I. M., Grabitchenko, V. M. & Petrychenko A. I. (2012). Purification of highly mineralized mine waters from sulfates using lime and metallic aluminum. Bulletin of KrNU. Kremenchuk: KDPU. Vol. 2 (14). C. 77–79
  • [15]Wang, M., Tan, M. Y., Zhu, Y., Huang, Y., & Xu, Y. (2023). Probing top-of-the-line corrosion using coupled multi-electrode array in conjunction with local electrochemical measurement. Npj Materials Degradation, 7(1). https://doi.org/10.1038/s41529-023-00332-x
  • [16]Zhang, C., Wang, H., He, Y., Zheng, W., & Wang, Y. (2023). Electrochemical potential dependence of SCC initiation in X60 pipeline steel in near-neutral pH environment. Journal of Materials Research and Technology, 27, 4950–4961. https://doi.org/10.1016/j.jmrt.2023.10.213
  • [17]N. N. Sergeev, S. N. Kutepov, A. N. Sergeev, A. G. Kolmakov, V. V. Izvol’skii, A. E. Gvozdev. (2020). Long-Term Strength of 22Kh2G2AYu Reinforcing-Bar Steel during Corrosion Cracking Tests in a Boiling Nitrate Solution // Russian Metallurgy (Metally).. No 4. P.434-440
  • [18]Gvozdev, A. E. (2019). Extreme effects of strength and plasticity in metal highly alloyed ingot and powder systems: monograph. 2nd ed., correct. and additional Tula: TulSU Publishing House. p.477
  • [19]Moran, A. J., & Lillard, R. S. (2023). A Modeling Approach to Understanding the Interrelated Nature of Cathodic Protection Current and AC Stray Current on Pipelines. Corrosion, 79(5), 526–538. https://doi.org/10.5006/4272
  • [20]Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of Interaction of Backfill Mixtures with Natural Rock Fractures within the Zone of Their Intense Manifestation while Developing Steep Ore Deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889
  • [21]COMSOL Multiphysics: Corrosion Module. User’s Guide. 2019. p.428
  • [22]COMSOL Multiphysics: Structural mechanics module. User’s Guide. 2019. p.1406
  • [23]Pradhan, S. K., Bhuyan, P., & Mandal, S. (2018). Individual and synergistic influences of microstructural features on intergranular corrosion behavior in extra-low carbon type 304L austenitic stainless steel. Corrosion Science, 139, 319–332. https://doi.org/10.1016/j.corsci.2018.05.014
  • [24]Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determing the performance of explosives for blasting management. Rudarsko-Geološko-Naftni Zbornik, 38(3), 19–28. https://doi.org/10.17794/rgn.2023.3.2
  • [25]Shirin, L.N., Yegorchenko, R.R., & Taran, V.O. (2022). Monitoring and operational control of the formation of gas hydrates in degassing pipelines. Collection of scientific works of NSU. –Dnipro: NTU "Dniprov Polytechnic". No. 69 -p. 243 –253. https://doi.org/10.33271/crpnmu/69.243
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01e67637-03b7-4c05-b326-6b24b50a365e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.