PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intermolecular Interactions between TNAZ and H2O: a DFT Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
All of the possible TNAZ/H2O complexes (1, 2 and 3), as well as the uncomplexed form, were fully optimized with the density functional method. Complex 3 was the most stable, with the largest corrected intermolecular interaction energy. Charge redistribution mainly occurs on the adjacent N–O...H atoms of the submolecules. Strong hydrogen bonds predominantly contribute to the interaction energies. It is energetically and thermodynamically unfavourable for TNAZ to bind with H2O and to form any stable complexes at room temperature.
Rocznik
Strony
289--300
Opis fizyczny
Bibliogr. 20 poz., rys. tab.
Twórcy
autor
  • Chemistry Department, Payame Noor University, 19395-4697 Tehran, I. R. Iran
  • Chemistry Department, Payame Noor University, 19395-4697 Tehran, I. R. Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P.O. Box 83145/115, I. R. Iran
Bibliografia
  • [1] Watt D.S., Cliff M.D., Evaluation of 1,3,3-Trinitroazetidine (TNAZ) − A High Performance Melt-castable Explosive, DSTO-TR-1000, July 2000, pp. 1-22.
  • [2] Iyer S., Eng Y.S., Yoyee M., Perz R., Alster J., Stock D., The 11th Annual Working Group, Institute on Synthesis of High Density Materials, Kiamesha Lakes, 1992.
  • [3] Sikder N., Sikder A.K., Bulakh N.R., Gandhe B.R., 1,3,3-Trinitroazetidine (TNAZ). A Melt-cast Explosive: Synthesis, Characterization and Thermal Behavior, J. Hazard. Mater., 2004, 113, 35-43.
  • [4] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P., Advances in Science and Technology of Modern Energetic Materials: An Overview, J. Hazard. Mater., 2008, 151, 289-305.
  • [5] Sikder A.K., Sikder N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, A112, 1-15.
  • [6] Agrawal J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, WILEY-VCH, 2010.
  • [7] Ju X.H., Xiao H.M., Xia Q.Y., A Density Functional Theory Investigation of 1,1-Diamino-2,2-dinitroethylene Dimers and Crystal, J. Chem. Phys., 2003, 119, 10247-10255.
  • [8] Chalasinski G., Szczesniak M.M., State-of-the-art and Challenges in the ab initio Theory of Intermolecular Interactions, Chem. Rev., 2000, 100, 4227-4252.
  • [9] Ju X.H., Xiao H.M., Intermolecular Interaction of Hydrazine Dimers: a Comparative Theoretical Study, J. Mol. Struct. (Theochem), 2002, 588, 79-86.
  • [10] Fletcher R.M., Powell J.D., A Rapidly Converging Descent Method for Minimization, J. Comput., 1963, 6, 163-166.
  • [11] Schlegel H.B., Optimization of Equilibrium Geometries and Transition States,J. Comput. Chem., 1982, 3, 214-218.
  • [12] Oftadeh M., Hamadanian M., Radhoosh M., Keshavarz M.H., DFT MolecularOrbital Calculations of Initial Step in Decomposition Pathways of TNAZ and some of Its Derivatives with –F, -CN and -OCH3 Groups, J. Mol. Struct. (Theochem), 2011, 964, 262-268.
  • [13] Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J., Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States, J. Comput. Chem., 1996, 17, 49-56.
  • [14] Sherrill C.D., Counterpoise Correction and Basis Set Superposition Error, http://vergil.chemistry.gatech.edu/notes/cp.pdf/ (accessed Mar 20, 2010).
  • [15] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farka O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Laham M.A.A, Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C, .GAUSSIAN 03, Pople, Gaussian, Inc.: Pittsburgh, PA, 2003.
  • [16] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-acceptor Viewpoint, Chem. Rev., 1988, 88, 899-926.
  • [17] Diao K.S., Wang F., Wang H.J., Ab initio Theoretical Study of the Interactions between CFCl3 and SO2, B. Environ. Contam. Tox., 2010, 84, 170-174.
  • [18] Sun X.-Q., Ju X.H., Xuand H.J., Fan X.W., Theoretical Study on the Intermolecular Interactions between 1,1-Diamino-2.2-dinitroethylene and H2O, J. Chin. Chem. Soc., 2007, 54, 1451-1456.
  • [19] Steiner T., The Hydrogen Bond in the Solid State, Angew. Chem. Int., 2002, 41, 48-76.
  • [20] Cramer C.J., Essentials of Computational Chemistry: Theories and Models, John Wiley & Sons. Ltd, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01e3a139-c289-4e60-b429-dae016d869be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.