PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation Modeling in Production Effectiveness Improvement – Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of production material flow management. The proper way of logistic tasks management has an impact on the production process effectiveness and the cycle time, which is a very important factor in manufacturing. Reducing the production process cycle time results not only in the ability to provide more customers with orders but also in increasing the level of resources usage (machines, operators etc.). In order to reach the aim of improving production effectiveness, the simulation modeling was used. It is a computer method that supports a decision-making process and allows to perform experiments on production without interfering with the real process. The paper also includes a risk analysis performed to evaluate the imperfections of simulation modeling, based on the rules of fuzzy logic.
Słowa kluczowe
Twórcy
autor
  • Wroclaw University of Science and Technology, Center for Advanced Manufacturing Technologies, Poland, phone: (+4871) 320 37 10
  • Wroclaw University of Science and Technology, Center for Advanced Manufacturing Technologies, Poland
autor
  • Wroclaw University of Science and Technology, Center for Advanced Manufacturing Technologies, Poland
Bibliografia
  • Abdelgawad, M. and Fayek, A.R. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP, Journal of Construction Engineering and Management, 136, 1028–1036.
  • Aqlan, F. and Lam, S.S. (2015). A fuzzy-based integrated framework for supply chain risk assessment, International Journal of Production Economics, 161, 54–63.
  • Bohàcs, G., Kovàcs, G. and Rinkàcs, A. (2016). Production logistics simulation supported by process description languages, Management and Production Engineering Review, 7, 1, 13–20.
  • Caiado, R.G.G., Scavarda, L.F., Gaviaõ, L.O., Ivson, P., Luiz de Mattos Nascimento, D. and GarzaReyes, J.A. (2021). A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management, International Journal of Production Economics, 231, 1–21.
  • Chang, D.S. and Sun, K.L.P. (2009). Applying DEA to enhance assessment capability of FMEA, International Journal of Quality & Reliability Management, 26, 629–643.
  • Chang, K.H. and Cheng, C.H. (2009). A risk assessment methodology using intuitionistic fuzzy set in FMEA, International Journal of Systems Science, 41, 1586–1596.
  • Elomari, J., Svensson, S. and Olsson, K. (2018). The role of simulation optimization in process automation for discrete manufacturing excellence, Proceedings of the 2018 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, 4084–4085.
  • Erickson, C.B., Ankeman, B.E., Plumlee, M. and Sanchez, S.M. (2018). Gradient Based Criteria for Sequential Design, Proceedings of the 2018 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, 467–478.
  • Garcia, P.A.A., Schirru, R. and Frutuoso Emelo, P.F. (2005). A fuzzy data envelopment analysis approach for FMEA, Progress in Nuclear Energy, 46, 359–373.
  • Gargama, H. and Chaturvedi S.K. (2011). Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic, IEEE Transactions on Reliability, 60, 102–110.
  • Ghadge, A., Feng, X., Dani, S. and Jiju, A. (2017). Supply chain risk assessment approach for process quality risks, International Journal of Quality & Reliability Management, 34, 7, 940–954.
  • Grabowik, C., Ćwikła, G., Kalinowski, K. and Kuc, M. (2019). A Comparison Analysis of the Computer Simulation Results of a Real Production System, 14th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2019, Advances in Intelligent Systems and Computing, 950, 344–354.
  • Grzybowska, K. and Kovács, G. (2017). The modelling and design process of coordination mechanisms in the supply chain, Journal of Applied Logic, 24, 25–38.
  • Gwiazda, A., Sękala, A., and Banaś, W. (2017). Modeling of a production system using the multiagent approach, IOP Conference Series Materials Science and Engineering, 227, 1–6.
  • Hamrol, A. (2018). New look at some aspects of maintenance and improvement of production processes, Management And Production Engineering Review, 9, 1, 34–43.
  • Łukaszewicz, K. (2019). Testing virtual prototype of a new product in two simulation environments, Management and Production Engineering Review, 10, 3, 124–135.
  • Kamińska, A.M., Parkitna, A. and Górski, A. (2018). Factors Determining the Development of Small Enterprises, In: Wilimowska Z., Borzemski L., Świątek J. (eds), Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017, Advances in Intelligent Systems and Computing, 657, 197–209, doi: 10.1007/978-3-319-67223-6_19.
  • Kikolski, M. (2017). Study of Production Scenarios with the Use of Simulation Models, Procedia Engineering, 182, 321–328.
  • Kłos, S. and Patalas-Maliszewska, J. (2017). Using a Simulation Method for Intelligent Maintenance Management, International Conference on Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017, Advances in Intelligent Systems and Computing, 637, 85–95.
  • Kuric, I., Bulej, V., Saga, M., and Pokorný, P. (2017). Development of simulation software for mobile robot path planning within multilayer map system based on metric and topological maps, International Journal of Advanced Robotic Systems, 14, 6, 1–14, doi: 10.1177/1729881417743029.
  • Marek-Kołodziej K., and Lapunka, I. (2020). Project prioritizing in a manufacturing – service enterprise with application of the fuzzy logic, Management and Production Engineering Review, 11, 4, 81–91, doi: 10.24425/mper.2020.136122.
  • Markowski, A.S. and Mannan, M.S. (2009). Fuzzy logic for piping Risk assessment (pfLOPA), Journal of Loss Prevention in the Process Industries, 22, 6, 921–927.
  • Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J. (2020). A comprehensive review on type 2 fuzzy logic applications: Past, present and future, Engineering Applications of Artificial Intelligence, 95, 1–12.
  • Pedroso, C.B., Calache, L.D.D.R., Lima Junior, F.R., Silva, A.L., and da Carpinetti, L.C.R. (2017). Proposal of a model for sales and operations planning (S&OP) maturity evaluation, Production, 27, 1–17.
  • Ratnayake, R.M.C., Stadnicka, D. and Antosz, K. (2013). Deriving an empirical model for machinery prioritization: Mechanical systems maintenance, IEEE International Conference on Industrial Engineering and Engineering Management, Bangkok.
  • Rosienkiewicz, M., Gąbka, J., Helman, J., Kowalski, A., and Susz, S. (2018). Additive Manufacturing Technologies Cost Calculation as a Crucial Factor in Industry 4.0, Advances in Manufacturing, Lecture Notes in Mechanical Engineering, 171–183.
  • Rudnik, K. and Pisz, I. (2014). Probabilistic fuzzy approach to evaluation of logistic service effectiveness, Management and Production Engineering Review, 5, 4, 66–75.
  • Sobaszek, Ł., Gola, A. and Kozłowski, E. (2017). Application of survival function in robust scheduling of production jobs, Proceedings of the Federated Conference on Computer Science and Information Systems (FEDCSIS), 11, 575–578.
  • Tan, Y., Yang, W., Yoshida, K. and Takakuwa, S. (2018). Application of IoT-aided simulation for a cyber-physical system, Proceedings of the 2018 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, 4086–4087.
  • Taylor, S., Eldabi, T., Riley, G., Paul, R. and Pidd, M. (2009). Simulation modelling is 50! Do we need a reality check?, Journal of the Operational Research Society, 60, 1, 69–82.
  • Vinodh, S. Aravindraj, S. Narayanan, R.S., and Yogeshwaran, N. (2021). Fuzzy assessment of FMEA for rotary switches: a case study, The TQM Journal, 33, 7, 461–475.
  • Yuanyuan, C., Limin, J. and Zundong, Z. (2009). Mamdani Model based Adaptive Neural Fuzzy Inference System and its Application, International Journal of Computational Intelligence, 5, 1, 22–29.
  • Zwolińska, B., Grzybowska, K. and Kubica, L. (2017). Shaping production change variability in relation to the utilized technology, DEStech Transactions on Engineering and Technology Research, ICPR 2017, Destech Publications, Inc., 51–56.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01dfac4a-cd01-43db-aa3c-38c61da86dbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.