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Abstract 

In this study the fixed-fixed column subjected to axial Euler’s load has been investigated. The load 
is placed between the fixed ends of the structure and its location can be changed along column’s 
length. The boundary problem of free vibrations of the mentioned system has been formulated on 
the basis of Bernoulli – Euler theory and taking into account non-linear axial deformation 
relationship. Due to non-linear expressions the solution of the problem was done with small 
parameter method. In the paper the change of the first vibration frequency in relation to location 
and magnitude of the loading force was obtained. The relationship between natural vibration 
frequency and the amplitude is also discussed. 
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1. Introduction  

In the literature the papers in which the vibrations of beams [1, 3, 4, 5, 11], columns [6, 
12, 7, 8, 9, 15-21] and frame [10, 13, 14] are investigated can be found. In the boundary 
problem formulation process of these systems the theory of Bernoulli – Euler is mostly 
used. (see [2, 8-22]). This theory is sufficient when slender systems are taken into 
account (structures in which the total length is much greater than transverse dimensions) 
and when the system is not connected to mass elements with translational and rotational 
inertia. In the other cases (especially then higher order vibration frequencies are 
considered) the theory of beams proposed by Timoshenko should be used in which the 
shear energy and the rotational inertia energy of cross section are considered [1, 3-7]. 
The second problem which is present in the boundary problems are the linear and non-
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linear theories. When the non-linear one is taken into account the deformation of the 
elastic element at moderately large deflections is written in the form: 
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where: Ui(xi,t), Wi(xi,t) longitudinal and transversal displacements respectively. 
In non-linear systems in which the boundary problem is described by non-linear 

differential equations [2, 8, 15, 16, 19-22 ] the components of vibration frequency can be 
computed as dependent on amplitude of vibration (non-linear components of vibration 
frequency). The non-linear components may have great influence on vibration frequency 
and can’t be omitted. In relation to the method of solution of the boundary problem the 
estimation of the non-linear component may be hard and time consuming. Nonlinear 
components of vibration frequencies of complex non-linear systems were investigated by 
Tomski and Przybylski [16], Przybylski [9] and Sokół [12] in relation to the conservative 
and non-conservative loads. The estimated components of vibration frequency were 
computed at rectilinear components of static equilibrium. The non-linear component of 
vibration frequency at rectilinear as well as at curvilinear form of static equilibrium of 
the column loaded by Euler’s force were discussed in [21, 22]. At specific load studies 
on an influence of an amplitude on natural vibration frequency can be found in the 
following publications [19, 20]. The results were discussed at rectilinear and curvilinear 
form of static equilibrium. It has been shown that an influence of an amplitude on 
vibration frequency highly depends on the magnitude of external load. The use of 
specific load allows one to choose such load magnitude along with the parameters of the 
loading structure that an influence of an amplitude is negligible.  

The main purpose of this paper is to present the results of the studies on the 
magnitude and location of the external force on natural vibration frequency (both linear 
and non-linear components) of the partially tensioned geometrically non-linear column. 

2. Boundary problem  

The considered column is presented in the figure 1. The column is fixed on both ends 
and loaded by a force P with constant line of action regardless to the deflection of the 
host element. The line of action of the force is compatible to the undeformed axis of the 
column. The point of location of the force is described by ζ parameter which is 
calculated as a relationship between length l1 to total length l: 

 
l

l1=ζ  (2) 

The bending stiffness and compression stiffness and mass of the tensioned part (above 
the point of external force location) and compressed one are as follows: ((EA)1 = (EA)2 = 
(EA); (EJ)1 = (EJ)2 = (EJ); (ρA)1 = (ρA)2 = (ρA)). 
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Figure 1. Considered column 

The boundary problem is formulated on the basis of relation (1) and Bernoulli – 
Euler theory. The differential equations (in transversal and longitudinal direction) of 
vibration of the column are as follows: 
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where: Si(t) – force in i – th element, Ui(xi,t), Wi(xi,t) – longitudinal and transversal 
displacements of the cross section of the i – th element described by coordinate xi. 

The boundary conditions of the considered system are presented below (5a-l): 
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The further consideration are performed in non-dimensional form with the following 
relations: 
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where ω is the natural vibration frequency. 
The parameters presented in (6) are substituted into differential equations and boundary 
conditions what leads to their non-dimensional forms. The non-linear elements of the 
differential equations and boundary conditions are written into power series of the small 
parameter of an amplitude. In this study only the rectilinear form of static equilibrium is 
investigated at which the series are as follows: 
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On the basis of the obtained equations and boundary conditions the distribution of the 
external load on the elements of the structure can be found as well as magnitudes of the 
axial forces during vibrations and basic (ω0) and nonlinear (ω2) components of natural 
vibrations. 
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3. Results of numerical simulations  

The results of numerical simulations are presented with the use of the following 
parameters: 
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The parameters expressed by the formulas (9a-e) are the non-dimensional ones. 
Wherefore no information about material properties and cross-section area of the column 
can be found in this paper.  
In the numerical calculations of an influence of a non-linear component ω2 on natural 
vibration frequency ω the magnitude of the small parameter of an amplitude was defined 
as ε = 0.008. 
 

 
Figure 2. Magnitude of vibration frequency Ω parameter in relation to the point of 

location of external load ζ  

In the figure 2 the change of vibration frequency parameter Ω (taking into account the 
non-linear component) in relation to the point of location of external load ζ has been 
presented. The calculations were performed at different magnitudes of external load 
parameter - λ. The vibration frequency highly depends on the magnitude and point of 
location of the external load. An increase of the magnitude of the external load causes an 
increase of the difference between the highest and the lowest magnitudes of vibrations in 
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the investigated range of ζ. In this range the three points along the length of the column 
can be found in which the natural vibration frequency is not highly dependent on 
external load. 
 

 
Figure 3. Magnitude of an influence on an amplitude on vibration frequency ζω 

parameter in relation to the point of location of external load ζ  

In the figure 3 the change of ζΩ parameter along length of the column at different 
magnitudes of external load has been plotted. It has been shown that an influence of an 
amplitude on natural vibrations depends on both external load magnitude and point of 
location of the external force. The highest magnitude of ζΩ has been found at ζ ≈ 0.34. In 
the unloaded system an influence of the second component of vibrations on vibration 
frequency is about 31.97 % at given amplitude corresponding to small parameter ε = 
0.008. 

4. Conclusions  

In this paper the non-linear column fixed on both ends subjected to Euler’s load (the load 
with constant line of action) has been investigated. The loading force was placed 
between the fixed ends of the structure. The boundary problem has been formulated on 
the basis of the Bernoulli – Euler theory and with taking into account the non-linear 
relationship of the axial deformation. In the final step of formulation of the boundary 
problem the small parameter method was used on the basis of which the computations of 
natural vibration frequency with consideration of linear and non-linear components 
(which depends on amplitude) were done. It has been shown that the natural vibration 
frequency of the investigated structure depends on both point of location and magnitude 
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of the external force. The similar relationship can be observed at component which 
depends on amplitude of vibrations. It has been stated that the non-linear component of 
vibration can’t be omitted especially at higher magnitudes of external load as well as at 
some point of location of external load. It’s influence on final magnitude of vibration 
frequency can be significant but on the other hand it depends on amplitude.  

In the future it is planned to develop of the studies started in this paper by addition of 
the elements which can have an influence on the behavior of the column during 
vibrations. The presented in this study results of numerical simulations may have 
engineering importance in investigation on the systems in which the point of location of 
the external load changes along their length (for example the screw along which the nut 
transferring loads changes position). 
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