PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonoverlapping domain decomposition for optimal control problems governed by semilinear models for gas flow in networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a nonoverlapping domain decomposition of the optimal control problem on the graph into local problems on smaller sub-graphs—ultimately on single edges. We prove convergence of the domain decomposition method on networks and study the wellposedness of the corresponding time-discrete optimal control problems. The point of the paper is that we establish virtual control problems on the decomposed subgraphs such that the corresponding optimality systems are in fact equal to the systems obtained via the domain decomposition of the entire optimality system.
Rocznik
Strony
191--225
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Friedrich-Alexander-Universit¨at Erlangen-Nu¨rnberg (FAU), Lehrstuhl Angewandte Mathematik (Lehrstuhl II), Cauerstr. 11, 91058 Erlangen, Germany
autor
  • Friedrich-Alexander-Universit¨at Erlangen-Nrnberg (FAU), Discrete Optimization, Cauerstr. 11, 91058 Erlangen, Germany
autor
  • Friedrich-Alexander-Universit¨at Erlangen-Nrnberg (FAU), Discrete Optimization, Cauerstr. 11, 91058 Erlangen, Germany
autor
  • Friedrich-Alexander-Universit¨at Erlangen-Nrnberg (FAU), Discrete Optimization, Cauerstr. 11, 91058 Erlangen, Germany
Bibliografia
  • [1] Ali, A.A., Deckelnick, K., and Hinze, M. (2016) Global minima for semilinear optimal control problems. Comput. Optim. Appl., 65(1), 261– 288, doi: 10.1007/s10589-016-9833-1.
  • [2] Altmuller, N., Grune, L. and Worthmann, K. (2010) Instantaneous control of the linear wave equation. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems MTSN 2010, Budapest, Hungary, 2010, 1895–1899.
  • [3] Antil, H., Hintermuller, M., Nochetto, R., Surowiec, T. and Wegner, D. (2017) Finite horizon model predictive control of electrowetting on dielectric with pinning. Interfaces Free Bound., 19(1), 1–30, doi: 10.4171/ IFB/375.
  • [4] Brouwer, J., Gasser, I., and Herty, M. (2011) Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks. Multiscale Modeling & Simulation, 9(2):601–623,doi: 10.1137/1008 13580.
  • [5] Buchheim, Ch., Kuhlmann, R. and Meyer, Ch. (2016) Combinatorial optimal control of semilinear elliptic pdes. Technical report 10. URL http: //www.optimization-online.org/DB HTML/2015/10/5161.html.
  • [6] Choi, H., Temam, R., Moin, P. and Kim, J. (1993) Feedback control for unsteady flow and its application to the stochastic burgers equation. Journal of Fluid Mechanics, 253:509543, doi: 10.1017/S0022112093001880.
  • [7] Choi, H., Hinze, M. and Kunisch, K. (1999) Instantaneous control of backward-facing step flows. Applied Numerical Mathematics, 31(2):133– 158, doi: 10.1016/S0168-9274(98)00131-7.
  • [8] Fugenschuh, A., Geissler, B., Gollmer, R., Morsi, A., Pfetsch, M.E., Rovekamp, J., Schmidt, M., Spreckelsen, K., and Steinbach, M.C. (2015) Physical and technical fundamentals of gas networks. In: Koch et al., 17–44. doi: 10.1137/1.9781611973693. ch2.
  • [9] Glowinski R. and Le Tallec, P. (1989) Augmented Lagrangian and Operatorsplitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, doi: 10.1137/1.9781611970838.
  • [10] Gugat, M., Leugering, G., Martin, A., Schmidt, M., Sirvent, M., and Wintergerst, D. (2016) Towards simulation based mixed-integer optimization with differential equations. Technical report. URL http: //www.optimization-online.org/DB HTML/2016/07/5542.html.
  • [11] Gugat, M., Leugering, G., Martin, A., Schmidt, M., Sirvent, M., and Wintergerst, D. (2017) MIP-based instantaneous control of mixedinteger pde-constrained gas transport problems. Computational Optimization and Applications, URL http://www.optimization-online.org/DB HTML/ 2017/04/5955.html.
  • [12] Hante, F.M., Leugering, G., Martin, A., Schewe, L. and Schmidt, M. (2017) Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial applications. In: P. Manchanda, R. Lozi, and A. H. Siddiqi, eds., Industrial Mathematics and Complex Systems: Emerging Mathematical Models, Methods and Algorithms. Springer Singapore, 77–122. doi: 10.1007/978-981-10-37580 5.
  • [13] Herty, M., Kirchner, C. and Klar, A. (2007) Instantaneous control for traffic flow. Mathematical Methods in the Applied Sciences, 30(2):153–169, doi: 10.1002/mma.779.
  • [14] Hinze, M. (2002) Optimal and instantaneous control of the instationary NavierStokes equations. URL https://www.math.uni-hamburg.de/home/hinze/ Psfiles/habil mod.pdf.
  • [15] Hinze, M. and Volkwein, S. (2002) Analysis of instantaneous control for the Burgers equation. Nonlinear Anal., 50(1):1–26, doi: 10.1016/ S0362546X(01)00750-7.
  • [16] Hundhammer, R. and Leugering, G. (2001) Instantaneous control of vibrating string networks. In: M. Grotschel, S. O. Krumke, and J. Rambau, eds., Online Optimization of Large Scale Systems, 229–249. Springer, Berlin Heidelberg, doi: 10.1007/978-3-662-04331-8 15.
  • [17] Koch, T., Hiller, B., Pfetsch, M.E., and Schewe, L. (2015) Evaluating Gas Network Capacities. SIAM-MOS series on Optimization. SIAM, doi: 10.1137/1.9781611973693.
  • [18] Kogut, P. I. and Leugering, G. (2011) Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Systems and Control: Foundations and Applications. Springer, doi: 10.1007/978-0-8176-8149-4.
  • [19] Lagnese, J. E. and Leugering, G. (2004) Domain Decomposition Methods in Optimal Control of Partial Differential Equations. International Series of Numerical Mathematics, 148. Birkhauser Verlag, URL http://www. springer.com/de/book/9783764321949.
  • [20] Leugering, G. (2017) Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks. Applied Mathematics, 8:1074–1099,doi: 10.4236/am.2017.88082.
  • [21] LeVeque, R.J. (1992) Numerical Methods for Conservation Laws. Birkhauser.
  • [22] LeVeque, R.J. (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
  • [23] Osiadacz, A.J. (1996) Different transient models - limitations, advantages and disadvantages. PSIG report 9606, Pipeline Simulation Interest Group. URL https://www.onepetro.org/conference-paper/PSIG-9606.
  • [24] Pertsinidis, A., Grossmann, I.E. and McRae, G.J. (1998) Parametric optimization of MILP programs and a framework for the parametric optimization of MINLPs. Computers & Chemical Engineering, 22:205–212, 1998. doi: 10.1016/S0098-1354(98)00056-8.
  • [25] Rose, D., Schmidt, M., Steinbach, M.C. and Willert, B.M. (2016) Computational optimization of gas compressor stations: MINLP models versus continuous reformulations. Mathematical Methods of Operations Research, 83(3):409–444, doi: 10.1007/s00186-016-0533-5.
  • [26] Schmidt, M., Sirvent, M. and Wollner, W. (2017) A decomposition method for MINLPs with Lipschitz continuous nonlinearities. Technical report, http://www.optimization-online.org/DB HTML/2017/07/6130.html.
  • [27] Schmidt, M., Steinbach, M.C. and Willert, B.M (2015) High detail stationary optimization models for gas networks. Optimization and Engineering, 16(1):131–164, doi: 10.1007/s11081-014-9246-x.
  • [28] Smoller, J. (1983) Shock Waves and Reaction-Diffusion Equations. Grundlehren der mathematischen Wissenschaften, 258. Springer Verlag, doi: 10.1007/978-1-4612-0873-0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01d9f2df-748e-4c61-9469-2fdaf6ee2e43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.