Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents results of thermokinetic investigation of the hazard-type reaction of Norwegian and Australian ilmenite ores with sulfuric acid, modified by the addition of elemental sulfur, to increase the process safety in industrial conditions. In the reactions of both ilmenite ores the addition of sulfur caused a reduction of the thermal power generated in the reaction and a decrease in the value of the thermokinetic parameter ΔTmax/Δτ for almost the whole range of initial concentrations of sulfuric acid. It was also found that the addition of sulfur to the reaction did not negatively affect the degree of ilmenite leaching. The interpretation of the obtained thermokinetic curves allowed to determine safe process conditions for both types of titanium raw materials.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--23
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
autor
- Grupa Azoty Zakłady Chemiczne “Police” S.A., Kuźnicka 1, 72-010 Police
Bibliografia
- 1. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards. New York: AIChE.
- 2. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.). Amsterdam: Academic Press, 2006.
- 3. OSHA. (2016). Hazard Communication. Hazard Classification Guidance for Manufacturers, Importers, and Employers.
- 4. Gustin, J.L. (2002). How the study of accident case histories can prevent runaway reaction accidents from recurring. Proc. Safety Environ. Protec., 80, 16–24. DOI: 10.1205/095758202753502370.
- 5. Fujita, M., Izato, Y., Iizuka, Y. & Miyake, A. (2019). Thermal hazard evaluation of runaway polymerization of acrylic acid. Proc. Safety Environ. Protec., 129, 339–347. DOI: 10.1016/j.psep.2019.08.003.
- 6. Casson, V., Lister, D.G., Milazzo, M.F. & Maschio, G. (2012). Comparison of criteria for prediction of runaway reactions in the sulphuric acid catalyzed esterification of acetic anhydride and methanol. J. Loss Prev. Proc. Ind., 25, 209–217. DOI: 10.1016/j.jlp.2011.09.002.
- 7. Ni, L., Mebarki, A., Jiang, J., Zhang, M., Pensee, V. & Dou, Z. (2016). Thermal risk in batch reactors: Theoretical framework for runaway and accident. J. Loss Prev. Proc. Ind., 43, 75–82. DOI: 10.1016/j.jlp.2016.04.004.
- 8. Sasikumar, C., Rao, D.S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N.K. & Mehrotra, S.P. (2004). Effect of mechanical activation on the kinetics of sulfuric leaching of beach sand ilmenite from Orissa, India. Hydrometallurgy, 75, 189–204. DOI: 10.1016%2Fj.hydromet.2004.08.001.
- 9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 76, 173–179. DOI: 10.1016%2Fj.hydromet.2004.10.006.
- 10. Li, C., Liang, B., Guo, L. & Wu, Z. (2006). Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Minerals Engineering, 19(14), 1430–1438. DOI: 10.1016/j.mineng.2006.02.005.
- 11. Greenwood, N.N. & Earnshaw, A. (1994). Chemistry of the elements. New York: Pergamon Press.
- 12. Winkler, J. (2003). Titanium Dioxide, Hannover: Vincentz Network.
- 13. Middlemas, S., Fang, Zak, Z. & Fan, P. (2013). A new method for production of titanium dioxide pigment. Hydrometallurgy, 131–132, 107–113. DOI: 10.1016/j.hydromet.2012.11.002.
- 14. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J. Hazard. Mat., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.
- 15. Zhang, W., Zhu, Z. & Yong, Cheng, A. (2011). A literature review of titanium metallurgical processes. Hydrometallurgy, 108, 177–188. DOI: 10.1016/j.hydromet.2011.04.005.
- 16. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radioactivity, 120, 26–32 DOI: 10.1016/j.jenvrad.2013.01.002.
- 17. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals, 10(6), 538. DOI: 10.3390/min10060538.
- 18. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes, 8(6), 640. DOI: 10.3390/pr8060640.
- 19. Moreno, V.C., Kanes, R., Wilday, J. & Vechot, L. (2015). Modeling of the venting of an untempered system under runaway conditions. J. Loss Prev. Process Ind., 36, 171–182. DOI: 10.1016%2Fj.jlp.2015.04.016.
- 20. Lin, C.P., Li, J.S., Tseng, J.M. & Mannan, M.S. (2016). Thermal runaway reaction for highly exothermic material in safe storage temperature. J. Loss Prev. Proc. Ind. 40, 259–265. DOI: 10.1016/j.jlp.2016.01.006.
- 21. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016%2Fj.mineng.2016.03.016.
- 22. Welham, N.J. & Llewellyn, D.J. (1998). Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering, 11, 827–841.DOI: 10.1016/S0892-6875(98)00070-3.
- 23. Yu, J., Chen, L. & Peng J. (2012). Thermal hazard research smokeless fireworks. J. Thermal Anal. Calorimetry, 109, 1151–1156. DOI: 10.1007/s10973-012-2367-6.
- 24. El-Sladek, M.H., Ahmed, H.M., El-Barawy, K., Morsi, M.B., El-Didamony, H. & Bjorkman, B. (2018). Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J. Thermal Anal. Calorimetry, 131, 2457–2465. DOI: 10.1007/s10973-017-6743-0.
- 25. Zheng, F., Guo, Y., Duan, W., Liu, S., Qiu, G., Chen, F., Jiang, T. & Wang, S. (2018). Transformation of Ti-bearing mineral in Panzhinua electric furnace titanium slag during oxidation roasting process. J. Thermal Anal. Calorimetry, 131, 1767–1776. DOI: 10.1007/s10973-017-6675-8.
- 26. Jablonski, M., Lawniczak-Jablonska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulfuric acid. J. Thermal Anal. Calorimetry, 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.
- 27. Jablonski, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorimetry, 124, 355–361. DOI: 10.1007/s10973-015-5114-y.
- 28. Jablonski, M. & Przepiera, A. (2001). Kinetic model for the reaction of ilmenite with sulfuric acid. J. Thermal Anal. Calorimetry, 65, 583–590. DOI: 10.1023/A:1012405826498.
- 29. Coddell, M. (1959). Analytical chemistry of titanium metals and compounds. New York, Intersciences Publishers Inc.
- 30. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances. Springer-Verlag, Berlin.
- 31. Jablonski, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulfuric acid reaction. J. Thermal Anal. Calorimetry, 96, 971–977. DOI: 10.1007/s10973-009-0048-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01d7397b-84cb-4bf3-b16b-b6437be098b6